Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382793

RESUMO

Citrus canker is a disease of economic importance and there are limited biocontrol agents available to mitigate it in an integrated manner. This study was conducted to combat citrus canker disease using biologically active nanoparticles (Ag, Cu and ZnO and 300, 900, 1200, and 1500 ppm) synthesized from macromolecules extracted from alga, Oedogonium sp. The synthesis of the nanoparticles was confirmed by UV-Vis Spectroscopy, FTIR, SEM, XRD, and DLS Zeta sizer while their efficacy was tested against Xanthomonas citri by measuring zone of inhibition. Results indicated that Ag and Cu nanoparticles at 1200 ppm exhibit the highest activity against Xanthomonas citri, followed by ZnO at 1500 ppm. The minimum inhibitory concentrations (MIC) of Ag, Cu and ZnO NPs were 1, 2 and 10 mg mL-1, respectively while minimum bactericidal concentrations (MBC) were for Ag and Cu 2, 4 mg mL-1 and for ZnO NPs more then 10 mg mL-1, were required to kill the X. citri. Bacterial growth respectively. Macromolecules extracted from algal sources can produce nanoparticles with bactericidal potential, in the order of Ag > Cu > ZnO to mitigate citrus canker disease and ensuring sustainable food production amid the growing human population.


Assuntos
Citrus , Xanthomonas , Óxido de Zinco , Humanos , Citrus/microbiologia , Xanthomonas/fisiologia , Segurança Alimentar , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Ecotoxicol Environ Saf ; 267: 115646, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939556

RESUMO

Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.


Assuntos
Poluentes Ambientais , Microalgas , Humanos , Dióxido de Carbono , Águas Residuárias , Bactérias
3.
Environ Sci Pollut Res Int ; 30(48): 104933-104957, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37718363

RESUMO

The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Petróleo/análise , Poluentes do Solo/análise , Hidrocarbonetos/metabolismo , Poluição por Petróleo/análise , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Microbiologia do Solo , Fungos/metabolismo , Oxigenases de Função Mista/metabolismo
4.
Front Plant Sci ; 14: 1026063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332715

RESUMO

There exists a global challenge of feeding the growing human population of the world and supplying its energy needs without exhausting global resources. This challenge includes the competition for biomass between food and fuel production. The aim of this paper is to review to what extent the biomass of plants growing under hostile conditions and on marginal lands could ease that competition. Biomass from salt-tolerant algae and halophytes has shown potential for bioenergy production on salt-affected soils. Halophytes and algae could provide a bio-based source for lignoceelusic biomass and fatty acids or an alternative for edible biomass currently produced using fresh water and agricultural lands. The present paper provides an overview of the opportunities and challenges in the development of alternative fuels from halophytes and algae. Halophytes grown on marginal and degraded lands using saline water offer an additional material for commercial-scale biofuel production, especially bioethanol. At the same time, suitable strains of microalgae cultured under saline conditions can be a particularly good source of biodiesel, although the efficiency of their mass-scale biomass production is still a concern in relation to environmental protection. This review summaries the pitfalls and precautions for producing biomass in a way that limits environmental hazards and harms for coastal ecosystems. Some new algal and halophytic species with great potential as sources of bioenergy are highlighted.

5.
Plants (Basel) ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299129

RESUMO

Good quality water and arable land are required for both domestic and agricultural uses. Increasing population leads to urbanization and industrialization increasing the need to share these resources and creating threats to the food supply. Higher meat consumption requires mitigation strategies to protect food and mitigate economic crises, especially in developing nations. The production of food crops for energy purposes and lower yield due to climate change increase food prices as well as have a negative impact on the economy. Thus, an alternative food source is required featuring high forage components to reduce grazing periods and to prevent rangeland degradation. Halophytes can tolerate high salinity and can be easily grown for fodder in coastal areas where fodder is a problem. Varied climate conditions offer opportunities to grow suitable halophytes for specific purposes. One important feature is their use as fodder. To reduce food shortages, saline areas could be used to grow nutritive and productive halophytic forage. Wild plants have undesirable metabolites produced in harsh conditions which may be harmful for ruminant health. Halophytes have moderate amounts of these metabolites which are nontoxic. Halophytes can be grown without intruding on agricultural lands and freshwater resources and could promote livestock production which may improve the socio-economic conditions of poor farmers in a sustainable and ecofriendly manner.

6.
Environ Sci Pollut Res Int ; 30(21): 60890-60906, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37041359

RESUMO

Large-scale pollution of water and soils bodies is associated with the discharge of the untreated textile industry effluents. Halophytes grows on saline lands and accumulate secondary metabolites and other stress protective compounds. Utilization of Chenopodium album (halophytes) to synthesize zinc oxide (ZnO) and their efficiency to treat different concentrations of textile industry waste water is proposed in this study. Potential of nanoparticles textile industry waste water effluents was also analyzed by exposing different concentrations of nanoparticles (0 (control), 0.2, 0.5, 1 mg) and time intervals of 5, 10, and 15 days. The absorption peaks by UV region, FTIR and SEM analysis were used characterized on ZnO NPs for the first time. FTIR analysis showed the preens of various functional groups and vital phytochemicals that can play its role in the formation of nanoparticles that can be used for trace elements removal and bioremediation. SEM analysis indicated that the pure ZnO NPs synthesis ranged from 30 to 57 nm. Results shows that the green synthesis of halophytic nanoparticles presents maximum removal capacity after 15 days exposure to 1 mg of ZnO NPs. Hence, the prepared ZnO Nps from halophytes can be a viable solution for treating the textile industry effluents before they are discharged into water bodies for sustainable environmental growth and environmental safety.


Assuntos
Chenopodium album , Nanopartículas , Óxido de Zinco , Águas Residuárias , Óxido de Zinco/química , Nanopartículas/química , Metais , Têxteis
7.
Ecotoxicol Environ Saf ; 249: 114408, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516621

RESUMO

The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Agricultura , Solo , Poluentes do Solo/análise
8.
NanoImpact ; 27: 100411, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803478

RESUMO

Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.


Assuntos
Agricultura , Fertilizantes , Fertilizantes/análise , Segurança Alimentar , Nanotecnologia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...