Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nature ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718835

RESUMO

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. In this paper, we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture, which is capable of joint structure prediction of complexes including proteins, nucleic acids, small molecules, ions, and modified residues. The new AlphaFold model demonstrates significantly improved accuracy over many previous specialised tools: far greater accuracy on protein-ligand interactions than state of the art docking tools, much higher accuracy on protein-nucleic acid interactions than nucleic-acid-specific predictors, and significantly higher antibody-antigen prediction accuracy than AlphaFold-Multimer v2.37,8. Together these results show that high accuracy modelling across biomolecular space is possible within a single unified deep learning framework.

2.
Nat Commun ; 15(1): 1906, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503774

RESUMO

Identifying key patterns of tactics implemented by rival teams, and developing effective responses, lies at the heart of modern football. However, doing so algorithmically remains an open research challenge. To address this unmet need, we propose TacticAI, an AI football tactics assistant developed and evaluated in close collaboration with domain experts from Liverpool FC. We focus on analysing corner kicks, as they offer coaches the most direct opportunities for interventions and improvements. TacticAI incorporates both a predictive and a generative component, allowing the coaches to effectively sample and explore alternative player setups for each corner kick routine and to select those with the highest predicted likelihood of success. We validate TacticAI on a number of relevant benchmark tasks: predicting receivers and shot attempts and recommending player position adjustments. The utility of TacticAI is validated by a qualitative study conducted with football domain experts at Liverpool FC. We show that TacticAI's model suggestions are not only indistinguishable from real tactics, but also favoured over existing tactics 90% of the time, and that TacticAI offers an effective corner kick retrieval system. TacticAI achieves these results despite the limited availability of gold-standard data, achieving data efficiency through geometric deep learning.


Assuntos
Desempenho Atlético , Desempenho Atlético/fisiologia , Pesquisa Qualitativa , Futebol
3.
Nucleic Acids Res ; 52(D1): D368-D375, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933859

RESUMO

The AlphaFold Database Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) has significantly impacted structural biology by amassing over 214 million predicted protein structures, expanding from the initial 300k structures released in 2021. Enabled by the groundbreaking AlphaFold2 artificial intelligence (AI) system, the predictions archived in AlphaFold DB have been integrated into primary data resources such as PDB, UniProt, Ensembl, InterPro and MobiDB. Our manuscript details subsequent enhancements in data archiving, covering successive releases encompassing model organisms, global health proteomes, Swiss-Prot integration, and a host of curated protein datasets. We detail the data access mechanisms of AlphaFold DB, from direct file access via FTP to advanced queries using Google Cloud Public Datasets and the programmatic access endpoints of the database. We also discuss the improvements and services added since its initial release, including enhancements to the Predicted Aligned Error viewer, customisation options for the 3D viewer, and improvements in the search engine of AlphaFold DB.


The AlphaFold Protein Structure Database (AlphaFold DB) is a massive digital library of predicted protein structures, with over 214 million entries, marking a 500-times expansion in size since its initial release in 2021. The structures are predicted using Google DeepMind's AlphaFold 2 artificial intelligence (AI) system. Our new report highlights the latest updates we have made to this database. We have added more data on specific organisms and proteins related to global health and expanded to cover almost the complete UniProt database, a primary data resource of protein sequences. We also made it easier for our users to access the data by directly downloading files or using advanced cloud-based tools. Finally, we have also improved how users view and search through these protein structures, making the user experience smoother and more informative. In short, AlphaFold DB has been growing rapidly and has become more user-friendly and robust to support the broader scientific community.


Assuntos
Inteligência Artificial , Estrutura Secundária de Proteína , Proteoma , Sequência de Aminoácidos , Bases de Dados de Proteínas , Ferramenta de Busca , Proteínas/química
4.
Science ; 381(6664): eadg7492, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733863

RESUMO

The vast majority of missense variants observed in the human genome are of unknown clinical significance. We present AlphaMissense, an adaptation of AlphaFold fine-tuned on human and primate variant population frequency databases to predict missense variant pathogenicity. By combining structural context and evolutionary conservation, our model achieves state-of-the-art results across a wide range of genetic and experimental benchmarks, all without explicitly training on such data. The average pathogenicity score of genes is also predictive for their cell essentiality, capable of identifying short essential genes that existing statistical approaches are underpowered to detect. As a resource to the community, we provide a database of predictions for all possible human single amino acid substitutions and classify 89% of missense variants as either likely benign or likely pathogenic.


Assuntos
Substituição de Aminoácidos , Doença , Mutação de Sentido Incorreto , Proteoma , Alinhamento de Sequência , Humanos , Substituição de Aminoácidos/genética , Benchmarking , Sequência Conservada , Bases de Dados Genéticas , Doença/genética , Genoma Humano , Conformação Proteica , Proteoma/genética , Alinhamento de Sequência/métodos , Aprendizado de Máquina
5.
JAMA ; 330(15): 1425-1426, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37732824

RESUMO

In this Viewpoint, 2023 Lasker award winners John Jumper and Demis Hassabis describe their invention, the artificial intelligence­based system AlphaFold, which is able to predict protein structure with great accuracy.


Assuntos
Distinções e Prêmios , Pesquisa Biomédica , Conformação Proteica , Pesquisa Biomédica/história , Medicina , Estrutura Molecular , Reino Unido
6.
Nature ; 618(7964): 257-263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286649

RESUMO

Fundamental algorithms such as sorting or hashing are used trillions of times on any given day1. As demand for computation grows, it has become critical for these algorithms to be as performant as possible. Whereas remarkable progress has been achieved in the past2, making further improvements on the efficiency of these routines has proved challenging for both human scientists and computational approaches. Here we show how artificial intelligence can go beyond the current state of the art by discovering hitherto unknown routines. To realize this, we formulated the task of finding a better sorting routine as a single-player game. We then trained a new deep reinforcement learning agent, AlphaDev, to play this game. AlphaDev discovered small sorting algorithms from scratch that outperformed previously known human benchmarks. These algorithms have been integrated into the LLVM standard C++ sort library3. This change to this part of the sort library represents the replacement of a component with an algorithm that has been automatically discovered using reinforcement learning. We also present results in extra domains, showcasing the generality of the approach.

7.
Science ; 378(6623): 990-996, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454847

RESUMO

We introduce DeepNash, an autonomous agent that plays the imperfect information game Stratego at a human expert level. Stratego is one of the few iconic board games that artificial intelligence (AI) has not yet mastered. It is a game characterized by a twin challenge: It requires long-term strategic thinking as in chess, but it also requires dealing with imperfect information as in poker. The technique underpinning DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego through self-play from scratch. DeepNash beat existing state-of-the-art AI methods in Stratego and achieved a year-to-date (2022) and all-time top-three ranking on the Gravon games platform, competing with human expert players.


Assuntos
Inteligência Artificial , Reforço Psicológico , Jogos de Vídeo , Humanos
8.
Gigascience ; 112022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448847

RESUMO

While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers and also from the Protein Data Bank.


Assuntos
Metadados , Registros , Sequência de Aminoácidos , Bases de Dados de Proteínas , Simulação por Computador
9.
Proc Natl Acad Sci U S A ; 119(47): e2206625119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375061

RESUMO

We analyze the knowledge acquired by AlphaZero, a neural network engine that learns chess solely by playing against itself yet becomes capable of outperforming human chess players. Although the system trains without access to human games or guidance, it appears to learn concepts analogous to those used by human chess players. We provide two lines of evidence. Linear probes applied to AlphaZero's internal state enable us to quantify when and where such concepts are represented in the network. We also describe a behavioral analysis of opening play, including qualitative commentary by a former world chess champion.


Assuntos
Redes Neurais de Computação , Recreação , Humanos , Aprendizagem
10.
Nature ; 610(7930): 47-53, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198780

RESUMO

Improving the efficiency of algorithms for fundamental computations can have a widespread impact, as it can affect the overall speed of a large amount of computations. Matrix multiplication is one such primitive task, occurring in many systems-from neural networks to scientific computing routines. The automatic discovery of algorithms using machine learning offers the prospect of reaching beyond human intuition and outperforming the current best human-designed algorithms. However, automating the algorithm discovery procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep reinforcement learning approach based on AlphaZero1 for discovering efficient and provably correct algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained to play a single-player game where the objective is finding tensor decompositions within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of-the-art complexity for many matrix sizes. Particularly relevant is the case of 4 × 4 matrices in a finite field, where AlphaTensor's algorithm improves on Strassen's two-level algorithm for the first time, to our knowledge, since its discovery 50 years ago2. We further showcase the flexibility of AlphaTensor through different use-cases: algorithms with state-of-the-art complexity for structured matrix multiplication and improved practical efficiency by optimizing matrix multiplication for runtime on specific hardware. Our results highlight AlphaTensor's ability to accelerate the process of algorithmic discovery on a range of problems, and to optimize for different criteria.

11.
Science ; 377(6606): eabq4282, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926047

RESUMO

Gerasimov et al. claim that the ability of DM21 to respect fractional charge (FC) and fractional spin (FS) conditions outside of the training set has not been demonstrated in our paper. This is based on (i) asserting that the training set has a ~50% overlap with our bond-breaking benchmark (BBB) and (ii) questioning the validity and accuracy of our other generalization examples. We disagree with their analysis and believe that the points raised are either incorrect or not relevant to the main conclusions of the paper and to the assessment of general quality of DM21.

12.
Sci Rep ; 12(1): 8638, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606400

RESUMO

In multiagent worlds, several decision-making individuals interact while adhering to the dynamics constraints imposed by the environment. These interactions, combined with the potential stochasticity of the agents' dynamic behaviors, make such systems complex and interesting to study from a decision-making perspective. Significant research has been conducted on learning models for forward-direction estimation of agent behaviors, for example, pedestrian predictions used for collision-avoidance in self-driving cars. In many settings, only sporadic observations of agents may be available in a given trajectory sequence. In football, subsets of players may come in and out of view of broadcast video footage, while unobserved players continue to interact off-screen. In this paper, we study the problem of multiagent time-series imputation in the context of human football play, where available past and future observations of subsets of agents are used to estimate missing observations for other agents. Our approach, called the Graph Imputer, uses past and future information in combination with graph networks and variational autoencoders to enable learning of a distribution of imputed trajectories. We demonstrate our approach on multiagent settings involving players that are partially-observable, using the Graph Imputer to predict the behaviors of off-screen players. To quantitatively evaluate the approach, we conduct experiments on football matches with ground truth trajectory data, using a camera module to simulate the off-screen player state estimation setting. We subsequently use our approach for downstream football analytics under partial observability using the well-established framework of pitch control, which traditionally relies on fully observed data. We illustrate that our method outperforms several state-of-the-art approaches, including those hand-crafted for football, across all considered metrics.


Assuntos
Futebol Americano , Futebol , Humanos , Aprendizagem
13.
Nature ; 602(7897): 414-419, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173339

RESUMO

Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a promising path towards sustainable energy. A core challenge is to shape and maintain a high-temperature plasma within the tokamak vessel. This requires high-dimensional, high-frequency, closed-loop control using magnetic actuator coils, further complicated by the diverse requirements across a wide range of plasma configurations. In this work, we introduce a previously undescribed architecture for tokamak magnetic controller design that autonomously learns to command the full set of control coils. This architecture meets control objectives specified at a high level, at the same time satisfying physical and operational constraints. This approach has unprecedented flexibility and generality in problem specification and yields a notable reduction in design effort to produce new plasma configurations. We successfully produce and control a diverse set of plasma configurations on the Tokamak à Configuration Variable1,2, including elongated, conventional shapes, as well as advanced configurations, such as negative triangularity and 'snowflake' configurations. Our approach achieves accurate tracking of the location, current and shape for these configurations. We also demonstrate sustained 'droplets' on TCV, in which two separate plasmas are maintained simultaneously within the vessel. This represents a notable advance for tokamak feedback control, showing the potential of reinforcement learning to accelerate research in the fusion domain, and is one of the most challenging real-world systems to which reinforcement learning has been applied.

15.
Nucleic Acids Res ; 50(D1): D439-D444, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791371

RESUMO

The AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) is an openly accessible, extensive database of high-accuracy protein-structure predictions. Powered by AlphaFold v2.0 of DeepMind, it has enabled an unprecedented expansion of the structural coverage of the known protein-sequence space. AlphaFold DB provides programmatic access to and interactive visualization of predicted atomic coordinates, per-residue and pairwise model-confidence estimates and predicted aligned errors. The initial release of AlphaFold DB contains over 360,000 predicted structures across 21 model-organism proteomes, which will soon be expanded to cover most of the (over 100 million) representative sequences from the UniRef90 data set.


Assuntos
Bases de Dados de Proteínas , Dobramento de Proteína , Proteínas/química , Software , Sequência de Aminoácidos , Animais , Bactérias/genética , Bactérias/metabolismo , Conjuntos de Dados como Assunto , Dictyostelium/genética , Dictyostelium/metabolismo , Fungos/genética , Fungos/metabolismo , Humanos , Internet , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas/genética , Proteínas/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
16.
Science ; 374(6573): 1385-1389, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882476

RESUMO

Density functional theory describes matter at the quantum level, but all popular approximations suffer from systematic errors that arise from the violation of mathematical properties of the exact functional. We overcame this fundamental limitation by training a neural network on molecular data and on fictitious systems with fractional charge and spin. The resulting functional, DM21 (DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong correlation and performs better than traditional functionals on thorough benchmarks for main-group atoms and molecules. DM21 accurately models complex systems such as hydrogen chains, charged DNA base pairs, and diradical transition states. More crucially for the field, because our methodology relies on data and constraints, which are continually improving, it represents a viable pathway toward the exact universal functional.

17.
Nature ; 600(7887): 70-74, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853458

RESUMO

The practice of mathematics involves discovering patterns and using these to formulate and prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used computers to assist in the discovery of patterns and formulation of conjectures1, most famously in the Birch and Swinnerton-Dyer conjecture2, a Millennium Prize Problem3. Here we provide examples of new fundamental results in pure mathematics that have been discovered with the assistance of machine learning-demonstrating a method by which machine learning can aid mathematicians in discovering new conjectures and theorems. We propose a process of using machine learning to discover potential patterns and relations between mathematical objects, understanding them with attribution techniques and using these observations to guide intuition and propose conjectures. We outline this machine-learning-guided framework and demonstrate its successful application to current research questions in distinct areas of pure mathematics, in each case showing how it led to meaningful mathematical contributions on important open problems: a new connection between the algebraic and geometric structure of knots, and a candidate algorithm predicted by the combinatorial invariance conjecture for symmetric groups4. Our work may serve as a model for collaboration between the fields of mathematics and artificial intelligence (AI) that can achieve surprising results by leveraging the respective strengths of mathematicians and machine learning.

18.
Nat Commun ; 12(1): 6456, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753913

RESUMO

In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, ß-VAE, which disentangles sensory data into interpretable latent factors, such as gender or age. Our results demonstrate a strong correspondence between the generative factors discovered by ß-VAE and those coded by single IT neurons, beyond that found for the baselines, including the handcrafted state-of-the-art model of face perception, the Active Appearance Model, and deep classifiers. Moreover, ß-VAE is able to reconstruct novel face images using signals from just a handful of cells. Together our results imply that optimising the disentangling objective leads to representations that closely resemble those in the IT at the single unit level. This points at disentangling as a plausible learning objective for the visual brain.


Assuntos
Aprendizado Profundo , Neurônios/fisiologia , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Humanos , Redes Neurais de Computação , Reconhecimento Visual de Modelos/fisiologia , Semântica , Lobo Temporal/fisiologia
19.
Proteins ; 89(12): 1711-1721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599769

RESUMO

We describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins. In the assessors' ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the next best group. The predictions made by AlphaFold had a median domain GDT_TS of 92.4; this is the first time that this level of average accuracy has been achieved during CASP, especially on the more difficult Free Modeling targets, and represents a significant improvement in the state of the art in protein structure prediction. We reported how AlphaFold was run as a human team during CASP14 and improved such that it now achieves an equivalent level of performance without intervention, opening the door to highly accurate large-scale structure prediction.


Assuntos
Modelos Moleculares , Redes Neurais de Computação , Dobramento de Proteína , Proteínas , Software , Sequência de Aminoácidos , Biologia Computacional , Aprendizado Profundo , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
20.
Nature ; 596(7873): 583-589, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265844

RESUMO

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1-4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'8-has been an important open research problem for more than 50 years9. Despite recent progress10-14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.


Assuntos
Redes Neurais de Computação , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos , Biologia Computacional/normas , Bases de Dados de Proteínas , Aprendizado Profundo/normas , Modelos Moleculares , Reprodutibilidade dos Testes , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...