Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 248: 125940, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482170

RESUMO

Rice straw waste was used to extract natural cellulose fibers, which was then chemically converted to cellulose gel. Both extracted cellulose and modified cellulose (gel) were characterized using different techniques and used for biosorption of b+arium, manganese, cobalt, nickel, copper, zinc, and cadmium. Both celluloses' chemical compositions were investigated. The FT-IR, XRD, TEM, and SEM results all support the success of the proposed chemical modification. Because of the increase in pore size within the gel composition, the metal sorption capability of the final chelating material (gel) was greater than that of extracted cellulose. The experimental data were fit to the sorption isotherm models of Langmuir, Freundlich, and Temkin. This new modified biopolymer's behaviour suggested that it could be used as a promising sorbent for cation removal from polluted dye baths and waste water. Furthermore, this modified cellulose was prepared as cheap material extracted from the rise waste which helping in protection of the environment and it was confirm excellent behaviour in the removal heavy metals from their aqueous solution compared to the previous materials reported before.


Assuntos
Oryza , Poluentes Químicos da Água , Purificação da Água , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Poluentes Químicos da Água/química , Cinética , Celulose/química , Concentração de Íons de Hidrogênio , Soluções , Purificação da Água/métodos
2.
Polymers (Basel) ; 15(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514435

RESUMO

This work examined the functional properties of three different treated fabrics, cotton, polyester, and cotton/polyester, with different polymeric materials (polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), or chitosan) in the presence and absence of two synthesized metal nanoparticles to impart and enhance fabric properties. Both metal nanoparticles (silver nanoparticle (AgNPs) and Zinc oxide nanoparticles (ZnONPs)) were synthesized using Psidium guajava Leaves and characterized using different techniques. The different treated fabrics were dyed with Reactive Dye (Syozol red k-3BS) and evaluated for their color strength, fastness properties, ultraviolet protection, antimicrobial activity, and mechanical properties. Results showed that treatment with polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), or chitosan enhances the functionality of all fabrics, with improved color strength, UV protection, and antimicrobial properties. Additionally, mechanical properties were slightly increased due to the creation of a thin film on the fabric surface. All dyed treated fabrics showed good ultraviolet protection and antimicrobial properties. The K/S of all treated textiles including nanoparticles and polymers was marginally greater than that of the treated materials without polymers. The UPF values demonstrate that the three investigated polymers and both metal nanoparticles enhance the fabrics' ability to block UV radiation and shield people's skin from its damaging effects. All treated textiles had UPF values that are higher than those of untreated textiles. Further research demonstrates that ZnONP-treated textiles exhibited greater UPF values than AgNP-treated textiles when the polymer component was present. Antibacterial examination demonstrated that treated materials had robust microbial resistance. This resistance is diminished by washing, but still prevents bacterial growth more effectively than untreated textiles.

3.
Luminescence ; 37(1): 21-27, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34528376

RESUMO

Novel fluorescent nanofibres were developed via the electrospinning of chromophore-doped cellulose. Two different perylene-doped cellulose fluorescent fibres were fabricated using cellulose as a host material and perylene dye derivatives as active dopants. Fluorescent cellulose nanofibres were prepared via the electrospinning technique using two different perylene dyes, including perylene diimide and perylene mono-imide sodium/potassium salts. The generated fluorescent silica nanoparticles exhibited diameters varying in the range 80-180 nm. The generated electrospun fluorescent nanofibrous structures displayed smooth surfaces with average diameters of 200-300 nm for cellulose comprising perylene diimide and sodium/potassium salts of perylene mono-imide dyes, respectively, dispersed uniformly in the cellulose matrix. The generated fluorescent nanoparticles and nanofibres were characterized by different standard methods, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescent optical microscope (FOM) and Fourier-transform infrared spectra (FT-IR). The fluorescence properties of the fabricated cellulose nanofibres were explored. Those fluorescent nanofibres pave the way for the development of promising textile fluorescence materials, such as flexible displays, photonics, and optical devices.


Assuntos
Nanofibras , Nanopartículas , Perileno , Celulose , Corantes , Eletrônica , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Int J Biol Macromol ; 170: 479-489, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385460

RESUMO

Having cotton fabrics with multifunctional properties is of the most research focused on using either different processes or new and different materials. Improving thermo - responsive and antibacterial properties of cotton fabrics decorated with silver nanoparticles and nanogel has been investigated. During this research silver nanoparticles (AgNPs) have been in situ prepared using poly(N-isopropyl acrylamide)/polyethyleneimine microgel. Prepared particles have been characterized, visualized their morphological structure and their particle through microscopic analysis, which proved that their particle size was in range of (6-10 nm). The decorated gel with silver nanoparticles has been functionalized with silicone compounds to produce hybrid material. The produced gel has been characterized for its pH, temperature, textural, rheological, antimicrobial, cytotoxicity, and conductivity properties. The functional properties of the treated and untreated fabrics have been investigated, and the results proved that treated fabric has conductivity, antibacterial, pH and thermo-responsive properties.


Assuntos
Antibacterianos/química , Corantes/química , Polietilenoimina/química , Fibra de Algodão , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanogéis/química , Tamanho da Partícula , Polietilenoglicóis/química , Prata/química , Temperatura , Têxteis
5.
Int J Biol Macromol ; 165(Pt A): 141-155, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987066

RESUMO

Innovative composites processed using sorted out and characterized precursors from nature were formulated, synthesized then applied to cotton cellulose in the fabric form to confer on the cellulose multifunctional performance properties. Precursors embrace Moringa oleifera leaves aqueous and alcoholic extracts, chitosan, clay known as Kaolin and, silver nanoparticles (AgNPs). The latter were prepared under the reducing and stabilization actions of Moringa extracts. These Precursors are mixed to form binary or tertiary mixture formulations under variable formation conditions of the required composites. The composites and fabrics treated thereof were submitted to characterization, analysis and testing using traditional tools as well as state-of-the-art facilities including FT-IR, UV, Particle size analyser, TEM, SEM and EDX. Aqueous and alcoholic Moringa extracts exhibit different chemical attributes meanwhile both extracts fail to induce formation of AgNPs at up to pH 6. Intensive formation of AgNPs occurs only with the alcoholic extract provided that pH 8 or higher was employed. The particle size of AgNPs decreases by increasing the pH indicating chemical combination of Moringa extract and chitosan Moringa aqueous or alcoholic extract exhibit larger particle size than those containing chitosan and AgNPs. AgNPs were characterized by spherical shape with precise distribution of the particles. The nitrogen content, the physical properties and the mechanical properties of the treated fabrics were taken to demonstrate the magnitudes of intercalation and interactions of Moringa aqueous and alcoholic extracts individually and in composite with the cellulosic fabric. It was as well to emphasize the high antimicrobial activity imparted by current composites to the cellulosic fabrics. Equal emphasis was placed on UPF and easy-care properties of the treated fabrics. To this end, current research brings into focus novel cellulosic products with multifunctional performance as a direct impact of multifarious attributes caused by chemical combination of the composite in question and cellulosic fabrics.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Moringa oleifera/química , Têxteis , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
6.
Carbohydr Polym ; 210: 144-156, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30732747

RESUMO

A facile method, cost-effective and highly efficient with shortened-time operation was devised for unprecedented modification of cotton fabrics. This modification induced the formation of metallic and metal oxide nanoparticles within cotton fabrics in such a way that cotton samples loaded with AgNPs- or AgNPs/ZnONPs or AgNPs/ZnONPs/CuNPs respectively. Presence of the trimetallic nanoparticles concomitantly within microstructural features of cotton imparts durable antibacterial, UV protection and conductivity properties to yield ultimately cotton fabrics with multifunctional performance. The nanoparticles were formed and stabilized independently by Polymethylol compound (PMC) and functionalized polyethyleneimine (FPEI) as per one bath. The results obtained proved that the solution of these metal compounds are turned from colourless to yellow and black green colour up on addition of PMC or FPEI compound. It was found that UV-vis spectra display maximum surface plasmon peak of around 410-415 confirming the successful synthesis of AgNPs stabilized by PMC or FPEI chains. In addition, the results obtained indicated that the as formed nanoparticles are successfully deposited into the surface of cellulose fabrics and reveal changes in crystalline structure. Fabrics underwent structural changes during their treatments as per the designed practice exhibit multifunctional properties and manifold performance. The resultant treated cotton fabric gives good antibacterial properties event after 20 washing cycles additionally to the excellent ultra-violet properties and excellent electrical conductivity.

7.
Colloids Surf B Biointerfaces ; 172: 545-554, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216905

RESUMO

A new hyperbranched polymer based on aconitic acid and two different amine (triethnaol amine and diethylenetriamine) with different functional groups; hydroxyl and amine groups respectively was successfully synthesised by A2B3 polymerization technique and characterised using Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), rheological properties, antimicrobial and cytotoxicity activity. In addition, a new heterocyclic azo dye was synthesised and characterised using FT-IR, NMR, mass spectra and antimicrobial activity. Characterisation provides that both composites and azo dye have been well prepared. A mixture from both hyberbranched polymer and synthesised azo dye have been applied to cotton fabrics. Evaluation of treated fabrics shows that, the surface of treated fabrics has a thin film from applied composite which coated the whole fibre surface. Treated fabrics have good antimicrobial activity against gram positive, gram negative bacteria and fungi. Fastness properties, physical and mechanical properties for treated fabrics were also evaluated.


Assuntos
Ácido Aconítico/química , Aminas/química , Compostos Azo/química , Corantes/química , Fibra de Algodão , Polímeros/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Compostos Azo/síntese química , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cor , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Polímeros/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Carbohydr Polym ; 178: 251-259, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050591

RESUMO

The research work presented herein was undertaken with a view to develop, characterize and highlight modified cotton fabrics that acquire durable antibacterial activity in concomitant with high metal sorption capacity. The development is based on reacting cotton cellulose previously oxidized by sodium periodate-with 4 amino-1,2,4 triazole in presence and absence of silver nano particles (AgNPs). The idea behind the periodate pretreatment is to convert (via oxidative cleavge) the 2,3-vicinal diol of the anhydroglucose units of cotton into aldehyde groups. The latter are easily reacting with the triazole groups in the modified cotton. On the other hand AgNPs were fabricated as per the reduction method using bio-material extracted from the root of licorice. By virtue of its reducing action, the bio-material converts Ag+ ions to Ag0 atom which is also stabilized Ag the bio-material in the form of cluster which is the agregate of about 5 Ag0. The clusters are cropped with the stabilizer thus forming silver nanoparticles. Measurement of the particle size displays a value of 8.7nm. Charactrisation of triazole treated cotton fabrics reveals the presence of the triazole moieties inside the structure of cotton. Furthermore, Fabrictreated with triazole in presence and absence of AgNPs exhibits a relatively high antibacterial activity against gram-negative tested bacteria (E. coli) as compared to that of gram-positive tested bacteria (S. aureus). The metal sorption of triazole treated cotton fabrics was higher than those of untreated or periodate pretreated fabric due to the increase in nitrogen centers created along the cellulose chains. Experimental data were accomplished through Langmuir, Freundlich and Temkin sorption isotherm models. It was shown that sorption follows Langmuir isotherm model and suggests that the innovative fabric in question can adsorb metal ions from polluted dye bath.


Assuntos
Antibacterianos/química , Fibra de Algodão , Nanopartículas Metálicas/química , Ácido Periódico/química , Prata , Triazóis/química , Celulose/química , Escherichia coli , Oxirredução , Staphylococcus aureus , Têxteis
9.
Carbohydr Polym ; 165: 421-428, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363568

RESUMO

Synthesis of smart hosting materials from solvent free modified pectin with fatty acid (have different molecular weight) have been occurred and characterised. Modified pectin with phase change material (PCM) have been prepared and applied to textile material. Smart composite matrix based on modified pectin was produce thermo-regulating characteristics which play the main role to control body temperature for various daily wear. The microcapsules (pectin/PCM) and treated fabric were characterized using SEM, DSC and FT-IR. The results confirmed the synthesis of modified pectin using solvent free method, and also confirmed its reaction with cotton surface. DSC result confirmed that, the treated fabrics have a thermo-regulating property.

10.
J Colloid Interface Sci ; 498: 413-422, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28349884

RESUMO

A simple chemical synthetic route was designed to prepare zinc oxide nanoparticles (ZnO-NPs) by using sodium alginate as anti-agglomeration agent in the presence of sodium hydroxide as alkali. Next, surface modification of ZnO-NPs with SiO2 nanoparticles was achieved as per to sol-gel process. Further enhancing of the multifunctional properties of SiO2@ZnO-NPs was conducted successfully thanks to (aminopropyl)triethoxysilan (APTES) and vinyltriethoxysilan (VTES) which, in turns, increase the affinity of the SiO2@ZnO-NPs nanocomposite towards glycosidic chains of cotton fabrics. Thorough characterizations of synthesized ZnO-NPs, SiO2@ZnO-NPs, SiO2@ZnO-NPs/APTES and SiO2@ZnO-NPs/VTES were conducted by the making use of well advanced techniques such as FT-IR, XRD, TEM, DLS and SEM-EDX. The data obtained clarified the formation of an interfacial chemical bond between ZnO and SiO2 as affirmed by FT-IR and XRD analysis. In addition, the results revealed by TEM, zeta sizer and SEM-EDX techniques, declared that the amorphous layers of SiO2, APTES or VTES evenly coated the surface of ZnO-NPs. For these nanocomposites, the work was extended to render cotton fabrics multifunctional properties such as antibacterial and UV protection with high durability even after 20 washing cycles using pad dry cure method. Taking the advantages of the silane compounds terminated by active groups such as OH, NH2, etc., open the door for further functionalization of the cotton fabrics' surfaces by durable multifunctional agents applied in various applications.

11.
Int J Biol Macromol ; 95: 429-437, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27865954

RESUMO

As per to silver nanoparticles/silicon dioxide nanoparticles (SiO2@AgNPs) properties (e.g., conductivity, reactant, adsorption, detachment and antimicrobial), many researchers were focused on its preparation technique. A core/shell of silicon dioxide and silver nanoparticles (SiO2@AgNPs) has been prepared by facile route. The as synthesized core/shell nanoparticles were chemically modified with two different silan compounds, nominated, vinyltriethoxysilan (VTEOS) and (3-aminopropyl)trimethoxysilan (APTEOS). World class facilities such as XRD, FT-IR, TEM, Particle size, DLS, SEM techniques were utilized for the nanoparticles characterization. The nanoparticulate system comprises SiO2@AgNPs, SiO2@AgNPs/APTEOS were applied to cotton fabric using butantetracarboxylic acid (BTCA) as across-linking agent. While UV irradiation by photo initiator was used as crosslinking agent for SiO2@AgNPs/VTEOS on cotton fabrics. The Treated cotton fabrics were evaluated for their surface morphology and heat transfer ability as well as antibacterial activity. The obtained data prove that the core/shell was successfully prepared, with AgNPs in core. In addition, both silan compounds (APTEOS, VTEOS) were successfully reacted with the outer shell SiO2. The results declared also that the treated fabrics exhibit a good antibacterial activity as well as good thermal properties.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bis-Fenol A-Glicidil Metacrilato/química , Bis-Fenol A-Glicidil Metacrilato/farmacologia , Fibra de Algodão , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Dióxido de Silício/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos
12.
Carbohydr Polym ; 136: 507-15, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572382

RESUMO

New natural biopolymer composite was prepared using extracted cellulose from an environmentally problematic water hyacinth Eichhornia crassipes (EC). The extracted cellulose was functionalized by chitosan and TiO2 nanoparticles to form EC/Chitosan (EC/Cs) composite network. Surface characterization of EC/Cs natural biopolymer composite was examined by spectrum analysis FT-IR, specific surface area, micropore volume, pore width and SEM. Furthermore, the sorption experiments were carried out as a function of pH, various initial dye concentration and contact time. Experiment results showed that the EC/Cs composite have high ability to remove C.I. Reactive Black 5 from its dye-bath effluent. The equilibrium sorption evaluation of RB5 conformed and fitted well to Langmuir adsorption isotherm models and the maximum sorption capacity was 0.606 mg/g. The kinetic adsorption models followed pseudo-second order model and the dye intra-particle diffusion may suggesting a chemical reaction mechanism. Further, it was obvious from the investigation that this composite could be applied as a promising low cost adsorbent for anionic dye removal from aqueous solutions.


Assuntos
Celulose/análogos & derivados , Quitosana/química , Eichhornia/química , Naftalenossulfonatos/química , Adsorção , Celulose/química
13.
Carbohydr Polym ; 122: 343-50, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25817678

RESUMO

A method to impregnate silver nanoparticles (AgNPs) into different polysaccharides substrates (cellulose powder (CP), microcrystalline cellulose (MCC), carboxymethyl cellulose (CMC) and chitosan (Chit)) by using glucose as reducing agent, is presented. X-ray diffraction analyses of polysaccharides coated with AgNPs showed the formation of silver particle sizes in the range of 3.7-5.6 nm and have almost spherical shape. The entire prepared composite shows antimicrobial effect. The antibacterial activity of polysaccharides loaded with silver nanoparticles was evaluated against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. The results suggest excellent antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Glucose/química , Nanopartículas Metálicas/química , Polissacarídeos/farmacologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Tamanho da Partícula , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Especificidade por Substrato , Difração de Raios X
14.
Carbohydr Polym ; 101: 912-9, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24299856

RESUMO

To enhance the thermoregulation property of cotton fabric, new materials have been prepared to be used for encapsulating phase change materials (PCMs). The new material has been prepared via esterification reaction between different carboxylic acids and different fatty acids crossed with diglycol compounds, these materials were characterised to be used as hosting materials for octadecane, which is heat storing material suitable for textile applications. FT-IR and DSC analysis were used to characterise the prepared hosting material. The prepared materials have special shape which has different cavity distance between its side chains, and also have a reactive group on the backbone of its structure which make these materials able to react chemically with cotton fabric to help it to be not leakage from the treated surface (permanent) and the material will be stable on the fibre surface even after washing. When applied onto textile materials, the treated fabric shows good thermoregulation property.


Assuntos
Celulose/química , Temperatura , Parafina/química , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA