Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(5): 126, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581440

RESUMO

CONTEXT: Due to their unique photophysical properties, organic charge transfer crystals are becoming promising materials for next-generation optoelectronic devices. This research paper explores the impact of s-block metals on a charge transfer crystal of indol-2-one for enhanced nonlinear optical (NLO) responses with efficient energetic offsets. The study reveals that alkali metals can enhance NLO performance due to their free electrons. METHOD: The Perdew-Burke-Ernzerhof functional of DFT with dispersion correction (D3) was used, and the λmax values ranged between 596 and 669 nm, with the highest value for dichloromethane (DCM). Leveraging the unique properties of metals allowed for the development of nonlinear optical materials with improved performance and versatility. Softness (σ) values provide insight into electron density changes, with higher values indicating a greater tendency for changes and lower values indicating the opposite. The NLO results for the chromophores MMI1-MMI6 show varying linear polarizability (< α0 >) along with their first (ß0) and second (γ0) hyperpolarizabilities. Chromophore MMI4 stands out with the highest NLO performance, having two potassium (K) atoms. Its < α0 > , ß0, and γ0 values of 4.19, 7.09, and 17.43 (× 10-24 e.s.u), respectively, indicate a significant enhancement in NLO response compared to the other chromophores. The transitions involving (O20)LP → (C3-N5)π* and (O19)LP → (N12-C13)π* exhibit the highest level of stabilization, followed by (O23)π → (C10-C11)π*, while (C6-N12)π → (C6-C7)π* shows the lowest level of stabilization for chromophore MMI4. The present research work is facile in its nature, and it can be helpful for synthetic scientist to design the new materials for uniting crystal properties with metal doping for efficient NLO devices.

2.
J Mol Model ; 30(2): 36, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206469

RESUMO

CONTEXT: This research aims to investigate the potential of pyrazine-based small donor moieties as donor-acceptor switches for optical and photovoltaic applications. The designed organic dyes have a high light harvesting efficiency (LHE) and can potentially generate significant electrical energy. METHODS: The study focuses on understanding the structural and electronic properties of these dyes through the analysis of dihedral angles, bond lengths, and energies of frontier molecular orbitals The UV-Vis spectroscopy parameters of the designed organic dyes revealed their absorption characteristics, including transition energies, wavelengths (λmax), and oscillator strengths (f). The photovoltaic properties of the developed organic dyes show a range of values: a range of 0.95-0.99 for LHE and a range of 1.77-33.02 W for maximum power output (Pmax) with the highest value for dye DDP5. For their stabilization energies, their natural bond orbitals had values ranging from 0.56 to 128.48 kcal/mol, their E(j)E(i) values from 0.22 to 1.29 a.u, and their Fi,j values from 0.024 to 0.213 kcal/mol. Out of all dyes, the DDP5 produced highest push-pull effect and can be good choice for further studies. The design of these novel organic materials for effective and economical solar energy conversion will be aided by evaluating the potential of 5,10-diphenyl-5,10-dihydrophenazine as a donor moiety and determining the structure-property correlations controlling the photovoltaic performance of the compounds.

3.
J Fluoresc ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157087

RESUMO

This research paper presents a comprehensive study on the design and photovoltaic parameters of azobenzene type 24 photo switches (PSs) of triazole by density functional theory (DFT). The focus was on investigating how to create a long-range push-pull effect of different substituents on the PS properties for their application in photovoltaics by further substituent decoration. Their range of values for the maximum wavelength (λmax) ranged 315-556 nm while their HOMO-LUMO energies (Egaps) were 0.57-6.35eV. The stability of the PS was evaluated by measuring hardness (η) and softness (σ) values. Additionally, photovoltaic parameters such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and maximum power (Pmax) were calculated to assess the performance of the PS as photovoltaic materials. The results revealed that PSs 6 exhibited promising photovoltaic parameters to include Voc values ranging from 0.4-1.63eV, FF values ranging from 0.5438-0.929, Jsc values ranging from 19.27-50.75 mA/cm2, and Pmax values ranging from 14.72-75.91W. This indicates its potential as an efficient light-harvesting material for photovoltaic applications. Moreover, this study presents a pioneering investigation on the correlation between rotational velocity (R) and Mayer bond index (MBI) for the first time. The findings revealed a significant correlation between R and MBI, providing valuable insights into the structural dynamics of the PS. This novel finding opens up new avenues for understanding the structural dynamics of PS and their potential applications in various fields, including photovoltaics. The study provides valuable insights into the structure-property relationships of azobenzene-based PS and their suitability for photovoltaic devices. Further investigations are warranted to optimize the design of the PS, enhance their photovoltaic performance, and explore the underlying mechanisms of the correlation between R and MBIs.

4.
J Mol Model ; 29(8): 262, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490167

RESUMO

CONTEXT: The organic solar cells (OSCs) are being developed with the goal of improving their photovoltaic capabilities. Here, utilizing computational methods, six new nonfullerene acceptors (NFA) comprising dyes (A1-A6) have been created by end-group alterations of the Y123 framework as a standard (R). METHODS: The DFT-based investigations at B3LYP/6-31G + (d,p) level were applied to evaluate their properties. The planar geometries associated with these structures, which lead to improved conjugation, were validated by the estimation of molecular geometries. Dyes A1-A6 have shorter Egap than R, according to a frontier molecular orbital (FMO) investigation, which encourages charge transfer in them. The dyes with their maximum absorption range were shown by optical properties to be 692-711 nm, which is significantly better than R with its 684 nm range. Their electrostatic and Mulliken charge patterns provided additional evidence of the significant separation of charges within these structures. All the dyes A1-A6 had improved light harvesting efficiency (LHE) values as compared to Y123, highlighting their improved capacity to generate charge carriers by light absorption. With the exception of dye A4, all newly developed dyes might have a superior rate of charge carrier mobility than R, according to reorganization energies λre. Dyes A3 and A4 had the greatest open-circuit voltage (Voc). Dye A3 exhibited improvement in all of its examined properties, making it a promising choice in DSSC applications.

5.
J Mol Graph Model ; 124: 108538, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37327646

RESUMO

A series of new organic dyes (T1-T6) with nonfullerene acceptors have been theoretically designed around the chemical structure of tyrian purple (T) natural dye. For their ground state energy parameters, all the molecular geometries of those dyes were optimized by density functional theory (DFT) at its Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory with 6-31G+(d,p) basis sets. When benchmarking against several long range and range separated levels of theory, the Coulomb attenuated B3LYP (CAM-B3LYP) produced most accurate absorption maxima (λmax) value to that of T so it was further employed for further Time dependent DFT (TD-DFT) calculations. Frontier molecular orbitals (FMOs) with natural bond orbital (NBO) studies were used to study their intra molecular charge transfer (ICT). All of the dyes had their energy gaps (Eg) values between their FMOs to range around 0.96-3.39 eV, whereas the starting reference dye had an Eg of 1.30 eV. Their ionization potential (IP) values were ranged to be 3.07-7.25 eV which indicated their nature to loss electrons. The λ max in chloroform was marginally red-shifted with a value 600-625 from T (580 nm). The dye T6 showed its highest linear polarizability (<α>), and first and second order hyperpolarizabilities (ß and γ). The synthetic experts can find the present research to design finest NLO materials for current and future uses.


Assuntos
Corantes , Modelos Moleculares , Corantes/química , Teoria da Densidade Funcional
6.
J Mol Model ; 29(3): 74, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826696

RESUMO

CONTEXT: In this study, new visible light harvesting dyes (MBR1-MBR5) have been designed as efficient materials with silyl based anchoring abilities on semiconducting units for future dye-solar cells applications. Their unique molecular structures of novel D-π-ASemiconductor type were evaluated thoroughly by density functional theory (DFT) calculations. To enhance the optical performance in visible region, a novel dye structure (MBR) was derived from the chemical structure of mordant black (MB) dye with electron acceptor semiconducting units (MBR1-MBR5). METHODS: The Coulomb-attenuating Becke, 3-parameter, Lee-Yang-Parr (CAM-B3LYP) functional, which had a hybrid and long-range correlation with 6-31G + (d,p), generated a [Formula: see text] (683 nm) that was very comparable to its experimental value (672 nm). The energies of highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO), and their HOMO-LUMO energy gaps (HLG) were calculated. Their ionization potentials (IP) varied from 5.616 to 8.320 eV, demonstrating their good electron donating trend. The [Formula: see text] values of dyes displayed a significant red shift from MBR (682 nm) value with range 565-807 nm except MBR1 which was slightly blue shifted. The dye MBR4, which had the smallest HLG (0.23 eV) had the greatest second order nonlinear optical (NLO) response of 144,234 Debye-Angstrom-1. The DFT calculated results provided insight into the creation of new silyl anchoring groups for future DSSCs material designs with increased stability and effectiveness. The goal of the current study is to forecast the development of novel NLO materials with a D-π-ASemiconductor design that use semiconductors as anchoring groups to adhere to a surface.

7.
J Fluoresc ; 33(1): 239-253, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399248

RESUMO

Throughout the opto-electronic devices industry, organic materials with considerable nonlinear optical (NLO) capabilities are being used. By employing 4,6-di(thiophen-2-yl)pyrimidine as a standard molecule, a series for new dyes (DMBMB1-DMBMB6) are created in the present paper by altering their functionalization with various electron acceptor (A) functional groups. The density functional fheory (DFT) and time dependent DFT (TD-DFT) based calculations have been performed to explore NLO responses by adjustment of different A units. The energy gap (Egap) of their highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) was ranged between 0.22-2.43 eV which was also used to calculate their global chemical parameters (GRPs). All the new dyes were subjected to UV-Vis studies revealing their frequencies being red shifted from starting dye (DMBMB). The theoretical investigations like frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis was used to investigate their intramolecular charge transfer (ICT). The dye DMBMB6 had the greatest linear polarizability, first hyperpolarizability (αtotal), and second order hyperpolarizability (ßtotal) for all the developed dyes. In conclusion, due of their low ICT, all the dyes showed potential NLO features. Scientific researchers would be able to harness these NLO features to discover NLO materials for current and future uses.

8.
J Mol Model ; 29(1): 4, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36481993

RESUMO

BACKGROUND: The organic dyes with non-fullerene acceptors (NFAs) have aided in the creation of competitive organic solar cells (OSCs) with long-term sustainability. A series of NFA dyes (IDIC-R1-IDIC-R9) have been designed by varying the end-capped fluorinated moieties (PD1-PD6) at indaceno (IDIC) core. METHODS: All the calculations were performed by density functional theory (DFT) and time-dependent DFT (TD-DFT)-based approaches. All the geometries were optimized at B3LYP/6-31G + (d,p) of DFT level at their ground state energies. Out of several density functionals, the CAM-B3LYP with 6-31G + (d,p) basis sets was selected after a benchmark study to carry out further calculations. All the dyes had their bandgaps in 0.11-3.12 eV while their starting reference dye had a bandgap value of 2.01 eV. RESULTS: Their ionization potential (IP) implied that these dyes have strong tendency to lose electrons. The λmax of the dyes was slightly redshifted from the IDIC (476 nm) and IDIC-R (479 nm) when changing solvent polarity from methanol to DCM and then chloroforms. The natural bond orbital (NBO) analysis showed the (S63)LP → (C61-C62)π* with highest stabilization energy. Their electron injection analysis showed that these dyes can be a good anode material against the aluminum and gold electrodes. The intramolecular charge transfer (ICT) process and stability of the dyes were investigated using frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis. CONCLUSION: Among all dyes, IDIC-R8 has the highest linear polarizability and second-order hyperpolarizability (ßtotal). All the dyes demonstrated promising non-linear optical (NLO) properties due to their low charge transfer barriers. Scientists would be able to exploit these properties to identify the best NLO materials for existing applications.


Assuntos
Teoria da Densidade Funcional
9.
J Fluoresc ; 32(6): 1999-2014, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35802211

RESUMO

The π-rich versus π-poor units in 4,6-di(thiophen-2-yl)pyrimidine (DTB) alternating the π-backbone of solar cells dyes have been extended with a push-pull technique to lower their HOMO-LUMO energy gap and to increase Intramolecular Charge Transfer (ICT). Density functional theory was used to optimize the ground state molecular geometries of newly designed dyes (DTB1-DTB6). Time Dependent DFT (TD-DFT) was used to simulate the Uv-vis spectral values at the maximum absorbance values ranging between 481-535 nm. These values were red shifted from DTB value of experimental (333 nm) and theoretical (346 nm). however, their computed absorbance and fluorescence spectra revealed a bathochromic shift of them upon an increasing the solvent polarity. Different DFT functionals such as (B3LYP, CAM-B3LYP, B97XD, and APFD) were employed to choose their proper use Uv-visible analysis to reveal an unexpected coherence at the B3LYP level with experimental values. As a result, the B3LYP with most diffused basis sets of 6-31G + (d,p) were used for further calculations. The parameters of Global Chemical reactivities revealed that all the dyes had a softer nature with their softness value range of 0.27-0.41. their Ionization Potentials (IP) ranged between 6.21-8.10 eV to comply that the new dyes had good electron donating potentials. With a good electron injection potential of -1.47-1.74 eV, aluminum can be the best electrode, while Au is excellent towards a hole injection operation which had the potential range of 1.79-3.68 eV. For Natural Bond Orbital (NBO) assessment, (N14)LP → (F16-F28)π* with stabilization energy of 42.55 kcal/mol was noted for DTB4. Their Second order hyperpolarizability [Formula: see text] values as their Nonlinear Optical (NLO) response ranged between 59.16-232.11 debye-angstrom-1 which were almost 6 times higher than the reference DTB (8.47D). The NLO attributes has also shown that a dyes with its small bandgap was related with higher hyperpolarizability values. Because of the decreased reorganization frequencies, newly discovered derivatives with electron transfer qualities might be comparable to or equivalent to those of commonly used electron transmission materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...