Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19092, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925541

RESUMO

Autonomous underwater vehicle (AUV) mapping of the western Rio Grande Rise (RGR), South Atlantic, and subsequent exploration and photography of horizontal lava flows exposed in near vertical, faulted escarpments, showed occurrences of red clays/weathered volcanic tops trapped between successive alkaline lava flows. These red clays indicate a hiatus in successive volcanic eruptions. Here, we report detailed mineralogical, geochemical, and rock magnetic characteristics of one such distinct red clay dredged from ~ 650 m water depth in the western RGR. The mineral constituents of the red clay are kaolinite, magnetite, oxidized magnetite (/maghemite), hematite, and goethite, with biogenic calcite and halite occupying voids or precipitated on the surface of the red clay. The chemical index of alteration (CIA) has a value of 93, showing that red clay is a product of extreme chemical weathering of the lava flows. The alkaline volcanic rocks recovered from nearby show an age of ~ 44 Ma, indicating an Eocene age for the volcanism. We show that the red clays are a product of sub-aerial chemical weathering of these Eocene volcanic rocks, in a warm-wet climate, before the thermal subsidence of the RGR to its modern-day bathymetric depth.

2.
Environ Microbiol Rep ; 12(3): 288-295, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100462

RESUMO

Transmission electron microscopy (TEM) and rock magnetic study of ferromanganese nodule sample JC120-104B collected from Clarion-Clipperton zone (CCZ) in the eastern Pacific Ocean indicate the presence of biogenic magnetite (magnetofossils). First-order reversal curves (FORCs) and decomposition of isothermal remanent magnetization (IRM) curves were used as the main tool for the characterization of magnetic properties of the bulk magnetic minerals present in the sample. TEM was performed for the direct identification of biogenic magnetic minerals (magnetofossils). The nodule sample has distinctive alternating Mn and Fe-rich layers per micro-X-ray fluorescence data. While diagenetic precipitation of Mn is known for the less oxygenated environment, the presence of biogenic magnetite is also common in the environments where the supply of oxygen is limited. Moreover, the increase in magnetic properties is consistent with the increase in Mn-content, which is related to favourable conditions for Mn precipitation as well as magnetite biomineralization in oxic-suboxic transition zone. Investigations on magnetofossil fingerprints lead to a better understanding of paleoenvironmental conditions involved in the formation and growth of deep-sea ferromanganese nodules.


Assuntos
Biomineralização , Sedimentos Geológicos/microbiologia , Ferro , Manganês , Óxido Ferroso-Férrico , Microscopia Eletrônica de Transmissão , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...