Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 34, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478130

RESUMO

Staphylococcus aureus (S. aureus) is an opportunistic gram-positive, non-motile, and non-sporulating bacteria that induces pneumonia, a provocative lung infection affecting mainly the terminal bronchioles and the small air sacs known as alveoli. Recently, it has developed antibiotic resistance to the available consortium as per the WHO reports; thereby, novel remedial targets and resilient medications to forestall and cure this illness are desperately needed. Here, using pan-genomics, a total of 1,387 core proteins were identified. Subtractive proteome analyses further identified 12 proteins that are vital for bacteria. One membrane protein (secY) and two cytoplasmic proteins (asd and trpG) were chosen as possible therapeutic targets concerning minimum % host identity, essentiality, and other cutoff values, such as high resistance in the MDR S. aureus. The UniProt AA sequences of the selected targets were modelled and docked against 3 drug-like chemical libraries. The top-ranked compounds i.e., ZINC82049692, ZINC85492658 and 3a of Isosteviol derivative for Aspartate-semialdehyde dehydrogenase (asd); ZINC38222743, ZINC70455378, and 5 m Isosteviol derivative for Anthranilate synthase component II (trpG); and finally, ZINC72292296, ZINC85632684, and 7 m Isosteviol derivative for Protein translocase subunit secY (secY), were further subjected to molecular dynamics studies for thermodynamic stability and energy calculation. Our study proposes new therapeutic targets in S. aureus, some of which have previously been reported in other pathogenic microorganisms. Owing to further experimental validation, we anticipate that the adapted methodology and the predicted results in this work could make major contributions towards novel drug discovery and their targets in S. aureus caused pneumonia.


Assuntos
Diterpenos do Tipo Caurano , Pneumonia , Staphylococcus aureus , Animais , Staphylococcus aureus/genética , Aspartato-Semialdeído Desidrogenase , Genômica/métodos , Antibacterianos/farmacologia , Descoberta de Drogas
2.
Funct Integr Genomics ; 23(3): 254, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495774

RESUMO

Staphylococcus sciuri (also currently Mammaliicoccus sciuri) are anaerobic facultative and non-motile bacteria that cause significant human pathogenesis such as endocarditis, wound infections, peritonitis, UTI, and septic shock. Methicillin-resistant S. sciuri (MRSS) strains also infects animals that include healthy broilers, cattle, dogs, and pigs. The emergence of MRSS strains thereby poses a serious health threat and thrives the scientific community towards novel treatment options. Herein, we investigated the druggable genome of S. sciuri by employing subtractive genomics that resulted in seven genes/proteins where only three of them were predicted as final targets. Further mining the literature showed that the ArgS (WP_058610923), SecY (WP_058611897), and MurA (WP_058612677) are involved in the multi-drug resistance phenomenon. After constructing and verifying the 3D protein homology models, a screening process was carried out using a library of Traditional Chinese Medicine compounds (consisting of 36,043 compounds). The molecular docking and simulation studies revealed the physicochemical stability parameters of the docked TCM inhibitors in the druggable cavities of each protein target by identifying their druggability potential and maximum hydrogen bonding interactions. The simulated receptor-ligand complexes showed the conformational changes and stability index of the secondary structure elements. The root mean square deviation (RMSD) graph showed fluctuations due to structural changes in the helix-coil-helix and beta-turn-beta changes at specific points where the pattern of the RMSD and root mean square fluctuation (RMSF) (< 1.0 Å) support any major domain shifts within the structural framework of the protein-ligand complex and placement of ligand was well complemented within the binding site. The ß-factor values demonstrated instability at few points while the radius of gyration for structural compactness as a time function for the 100-ns simulation of protein-ligand complexes showed favorable average values and denoted the stability of all complexes. It is assumed that such findings might facilitate researchers to robustly discover and develop effective therapeutics against S. sciuri alongside other enteric infections.


Assuntos
Antibacterianos , Galinhas , Humanos , Animais , Bovinos , Suínos , Cães , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Farmacorresistência Bacteriana/genética , Genômica
4.
Front Genet ; 9: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487617

RESUMO

Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the "pocketome druggability." To this end, we first computed the "modelome" (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines.

5.
Front Microbiol ; 8: 1878, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067003

RESUMO

The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.

6.
Biomed Res Int ; 2015: 139580, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705648

RESUMO

Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.


Assuntos
Genoma Bacteriano/genética , Ilhas Genômicas/genética , Helicobacter pylori/genética , Estômago/microbiologia , Virulência/genética , DNA Bacteriano/genética , Variação Genética/genética , Genômica/métodos , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Filogenia , Estômago/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
8.
PLoS One ; 8(1): e53818, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342011

RESUMO

Corynebacterium pseudotuberculosis is a facultative intracellular pathogen and the causative agent of several infectious and contagious chronic diseases, including caseous lymphadenitis, ulcerative lymphangitis, mastitis, and edematous skin disease, in a broad spectrum of hosts. In addition, Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic, and singleton analyses revealed close relationships among pathogenic corynebacteria, the clonal-like behavior of C. pseudotuberculosis and slow increases in the sizes of pan-genomes. According to extrapolations based on the pan-genomes, core genomes and singletons, the C. pseudotuberculosis biovar ovis shows a more clonal-like behavior than the C. pseudotuberculosis biovar equi. Most of the variable genes of the biovar ovis strains were acquired in a block through horizontal gene transfer and are highly conserved, whereas the biovar equi strains contain great variability, both intra- and inter-biovar, in the 16 detected pathogenicity islands (PAIs). With respect to the gene content of the PAIs, the most interesting finding is the high similarity of the pilus genes in the biovar ovis strains compared with the great variability of these genes in the biovar equi strains. Concluding, the polymerization of complete pilus structures in biovar ovis could be responsible for a remarkable ability of these strains to spread throughout host tissues and penetrate cells to live intracellularly, in contrast with the biovar equi, which rarely attacks visceral organs. Intracellularly, the biovar ovis strains are expected to have less contact with other organisms than the biovar equi strains, thereby explaining the significant clonal-like behavior of the biovar ovis strains.


Assuntos
Corynebacterium/genética , Genoma Bacteriano/genética , Animais , Deleção de Genes , Genes Bacterianos/genética , Variação Genética , Ilhas Genômicas/genética , Família Multigênica/genética , Especificidade da Espécie , Fatores de Virulência/genética
9.
J Biotechnol ; 167(2): 135-41, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23201561

RESUMO

Corynebacterium pseudotuberculosis is the causative agent of several veterinary diseases in a broad range of economically important hosts, which can vary from caseous lymphadenitis in sheep and goats (biovar ovis) to ulcerative lymphangitis in cattle and horses (biovar equi). Existing vaccines against C. pseudotuberculosis are mainly intended for small ruminants and, even in these hosts, they still present remarkable limitations. In this study, we present the complete genome sequence of C. pseudotuberculosis biovar equi strain 258, isolated from a horse with ulcerative lymphangitis. The genome has a total size of 2,314,404 bp and contains 2088 predicted protein-coding regions. Using in silico analysis, eleven pathogenicity islands were detected in the genome sequence of C. pseudotuberculosis 258. The application of a reverse vaccinology strategy identified 49 putative antigenic proteins, which can be used as candidate vaccine targets in future works.


Assuntos
Antígenos de Bactérias/genética , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/imunologia , Biotecnologia/métodos , Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/imunologia , Doenças dos Animais/imunologia , Doenças dos Animais/microbiologia , Doenças dos Animais/prevenção & controle , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Vacinas Bacterianas/genética , Sequência de Bases , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/prevenção & controle , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/metabolismo , Genoma Bacteriano , Ilhas Genômicas , Cavalos
10.
Comput Struct Biotechnol J ; 6: e201303013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24688721

RESUMO

Since the first successful attempt at sequencing the Corynebacterium pseudotuberculosis genome, large amounts of genomic, transcriptomic and proteomic data have been generated. C. pseudotuberculosis is an interesting bacterium due to its great zoonotic potential and because it causes considerable economic losses worldwide. Furthermore, different strains of C. pseudotuberculosis are capable of causing various diseases in different hosts. Currently, we seek information about the phylogenetic relationships between different strains of C. pseudotuberculosis isolates from different hosts across the world and to employ these data to develop tools to diagnose and eradicate the diseases these strains cause. In this review, we present the latest findings on C. pseudotuberculosis that have been obtained with the most advanced techniques for sequencing and genomic organization. We also discuss the development of in silico tools for processing these data to prompt a better understanding of this pathogen.

11.
J Bacteriol ; 194(17): 4736-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22887652

RESUMO

Here, we report the whole-genome sequences of two ovine-pathogenic Corynebacterium pseudotuberculosis isolates: strain 3/99-5, which represents the first C. pseudotuberculosis genome originating from the United Kingdom, and 42/02-A, the second from Australia. These genome sequences will contribute to the objective of determining the global pan-genome of this bacterium.


Assuntos
Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Doenças dos Ovinos/microbiologia , Animais , Austrália , Sequência de Bases , Mapeamento Cromossômico , Infecções por Corynebacterium/microbiologia , Corynebacterium pseudotuberculosis/classificação , Corynebacterium pseudotuberculosis/isolamento & purificação , Linfadenite/microbiologia , Linfadenite/veterinária , Dados de Sequência Molecular , Escócia , Análise de Sequência de DNA , Ovinos/microbiologia
12.
Gene ; 508(2): 145-56, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22890137

RESUMO

The genus Campylobacter contains pathogens causing a wide range of diseases, targeting both humans and animals. Among them, the Campylobacter fetus subspecies fetus and venerealis deserve special attention, as they are the etiological agents of human bacterial gastroenteritis and bovine genital campylobacteriosis, respectively. We compare the whole genomes of both subspecies to get insights into genomic architecture, phylogenetic relationships, genome conservation and core virulence factors. Pan-genomic approach was applied to identify the core- and pan-genome for both C. fetus subspecies and members of the genus. The C. fetus subspecies conserved (76%) proteome were then analyzed for their subcellular localization and protein functions in biological processes. Furthermore, with pathogenomic strategies, unique candidate regions in the genomes and several potential core-virulence factors were identified. The potential candidate factors identified for attenuation and/or subunit vaccine development against C. fetus subspecies contain: nucleoside diphosphate kinase (Ndk), type IV secretion systems (T4SS), outer membrane proteins (OMP), substrate binding proteins CjaA and CjaC, surface array proteins, sap gene, and cytolethal distending toxin (CDT). Significantly, many of those genes were found in genomic regions with signals of horizontal gene transfer and, therefore, predicted as putative pathogenicity islands. We found CRISPR loci and dam genes in an island specific for C. fetus subsp. fetus, and T4SS and sap genes in an island specific for C. fetus subsp. venerealis. The genomic variations and potential core and unique virulence factors characterized in this study would lead to better insight into the species virulence and to more efficient use of the candidates for antibiotic, drug and vaccine development.


Assuntos
Campylobacter fetus/classificação , Campylobacter fetus/genética , Genes Bacterianos , Genoma Bacteriano , Ilhas Genômicas/genética , Fatores de Virulência/genética , Virulência/genética , Animais , Infecções por Campylobacter/microbiologia , Campylobacter fetus/patogenicidade , Bovinos , DNA Bacteriano/genética , Humanos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
13.
J Bacteriol ; 194(16): 4476, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22843601

RESUMO

Corynebacterium pseudotuberculosis causes disease in several animal species, although distinct biovars exist that appear to be restricted to specific hosts. In order to facilitate a better understanding of the differences between biovars, we report here the complete genome sequence of the equine pathogen Corynebacterium pseudotuberculosis strain 1/06-A.


Assuntos
Corynebacterium pseudotuberculosis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Animais , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/isolamento & purificação , Doenças dos Cavalos/microbiologia , Cavalos , Dados de Sequência Molecular , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...