Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trop Biomed ; 39(3): 384-393, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214435

RESUMO

Many of the therapeutic effects of plant extracts and bioactive compounds appear related to their immunomodulatory effects and impact on the host immune system. The immune response is desirable to mitigate established infections and, in the case of severe malaria, is a feasible approach to dealing with the overwhelming cytokine response. Glycogen synthase kinase-3 (GSK3), a Ser/Thr kinase that is a central regulator of the cytokine response, is a promising antimalarial drug target. In this review, we discussed our ongoing research projects, which include assessing the antimalarial activities of medicinal plants and their bioactive compounds, immunomodulatory activities mediated by GSK3, and the potential inflammatory pathway involved in malarial infection.


Assuntos
Antimaláricos , Malária , Plantas Medicinais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Citocinas , Quinase 3 da Glicogênio Sintase/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia
2.
Tropical Biomedicine ; : 384-393, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-960312

RESUMO

@#Many of the therapeutic effects of plant extracts and bioactive compounds appear related to their immunomodulatory effects and impact on the host immune system. The immune response is desirable to mitigate established infections and, in the case of severe malaria, is a feasible approach to dealing with the overwhelming cytokine response. Glycogen synthase kinase-3 (GSK3), a Ser/Thr kinase that is a central regulator of the cytokine response, is a promising antimalarial drug target. In this review, we discussed our ongoing research projects, which include assessing the antimalarial activities of medicinal plants and their bioactive compounds, immunomodulatory activities mediated by GSK3, and the potential inflammatory pathway involved in malarial infection.

3.
Trop Biomed ; 36(3): 776-791, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597499

RESUMO

Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3ß (GSK3ß) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3ß. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3ß (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3ß inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.


Assuntos
Antimaláricos/farmacologia , Citocinas/imunologia , Diterpenos/farmacologia , Malária/tratamento farmacológico , Andrographis/química , Animais , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Malária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
4.
Tropical Biomedicine ; : 776-791, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-780663

RESUMO

@#Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase- 3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 μM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...