Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(4): 2632-2652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375983

RESUMO

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Amiloide/metabolismo , Encéfalo/patologia , Proteínas Amiloidogênicas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos
2.
Nucleic Acids Res ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348876

RESUMO

RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.

3.
Mol Ther Nucleic Acids ; 35(1): 102088, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38192611

RESUMO

Inherited retinal dystrophies caused by dominant mutations in photoreceptor (PR) cell expressed genes are a major cause of irreversible vision loss. Oligonucleotide therapy has been of interest in diseases that conventional medicine cannot target. In the early days, small interfering RNAs (siRNAs) were explored in clinical trials for retinal disorders with limited success due to a lack of stability and efficient cellular delivery. Thus, an unmet need exists to identify siRNA chemistry that targets PR cell expressed genes. Here, we evaluated 12 different fully chemically modified siRNA configurations, where the valency and conjugate structure were systematically altered. The impact on retinal distribution following intravitreal delivery was examined. We found that the increase in valency (tetravalent siRNA) supports the best PR accumulation. A single intravitreal administration induces multimonths efficacy in rodent and porcine retinas while demonstrating a good safety profile. The data suggest that this configuration can treat retinal diseases caused by PR cell expressed genes with 1-2 intravitreal injections per year.

4.
Nucleic Acid Ther ; 33(6): 348-360, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010230

RESUMO

Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the DMD transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the DMD transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/mdx males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Masculino , Animais , Camundongos , Humanos , Distrofina/genética , Oligonucleotídeos Antissenso/uso terapêutico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Terapia Genética/métodos , Éxons/genética , RNA
5.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790464

RESUMO

Inherited retinal dystrophies caused by dominant mutations in photoreceptor-expressed genes, are a major cause of irreversible vision loss. Oligonucleotide therapy has been of interest in diseases that conventional medicine cannot target. In the early days, small interfering RNAs (siRNAs) were explored in clinical trials for retinal disorders with limited success due to a lack of stability and efficient cellular delivery. Thus, an unmet need exists to identify siRNA chemistry that targets photoreceptor-expressed genes. Here we evaluated 12 different fully chemically modified siRNA configurations, where the valency and conjugate structure were systematically altered. The impact on retinal distribution following intravitreal delivery was examined. We found that the increase in valency (tetravalent siRNA) supports the best photoreceptor accumulation. A single intravitreal administration induces multi-months efficacy in rodent and porcine retinas while showing a good safety profile. The data suggest that this configuration can treat retinal diseases caused by photoreceptor-expressed genes with 1-2 intravitreal injections per year.

6.
Res Sq ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398145

RESUMO

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3'- and 5'-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3'-exonuclease by ~ 32-fold over PS backbone and > 1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~ 6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions.

7.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292886

RESUMO

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3'- and 5'-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3'-exonuclease by ~32-fold over PS backbone and >1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions.

8.
Nat Commun ; 13(1): 5802, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192390

RESUMO

Small interfering RNAs are a new class of drugs, exhibiting sequence-driven, potent, and sustained silencing of gene expression in vivo. We recently demonstrated that siRNA chemical architectures can be optimized to provide efficient delivery to the CNS, enabling development of CNS-targeted therapeutics. Many genetically-defined neurodegenerative disorders are dominant, favoring selective silencing of the mutant allele. In some cases, successfully targeting the mutant allele requires targeting single nucleotide polymorphism (SNP) heterozygosities. Here, we use Huntington's disease (HD) as a model. The optimized compound exhibits selective silencing of mutant huntingtin protein in patient-derived cells and throughout the HD mouse brain, demonstrating SNP-based allele-specific RNAi silencing of gene expression in vivo in the CNS. Targeting a disease-causing allele using RNAi-based therapies could be helpful in a range of dominant CNS disorders where maintaining wild-type expression is essential.


Assuntos
Doença de Huntington , Alelos , Animais , Engenharia Química , Inativação Gênica , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
Mol Ther Nucleic Acids ; 29: 116-132, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35795486

RESUMO

Effective systemic delivery of small interfering RNAs (siRNAs) to tissues other than liver remains a challenge. siRNAs are small (∼15 kDa) and therefore rapidly cleared by the kidneys, resulting in limited blood residence times and tissue exposure. Current strategies to improve the unfavorable pharmacokinetic (PK) properties of siRNAs rely on enhancing binding to serum proteins through extensive phosphorothioate modifications or by conjugation of targeting ligands. Here, we describe an alternative strategy for enhancing blood and tissue PK based on dynamic modulation of the overall size of the siRNA. We engineered a high-affinity universal oligonucleotide anchor conjugated to a high-molecular-weight moiety, which binds to the 3' end of the guide strand of an asymmetric siRNA. Data showed a strong correlation between the size of the PK-modifying anchor and clearance kinetics. Large 40-kDa PK-modifying anchors reduced renal clearance by ∼23-fold and improved tissue exposure area under the curve (AUC) by ∼26-fold, resulting in increased extrahepatic tissue retention (∼3- to 5-fold). Furthermore, PK-modifying oligonucleotide anchors allowed for straightforward and versatile modulation of blood residence times and biodistribution of a panel of chemically distinct ligands. The effects were more pronounced for conjugates with low lipophilicity (e.g., N-Acetylgalactosamine [GalNAc]), where significant improvement in uptake by hepatocytes and dose-dependent silencing in the liver was observed.

10.
Mol Ther ; 30(3): 1329-1342, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774753

RESUMO

Nonalcoholic steatohepatitis (NASH) is a severe liver disorder characterized by triglyceride accumulation, severe inflammation, and fibrosis. With the recent increase in prevalence, NASH is now the leading cause of liver transplant, with no approved therapeutics available. Although the exact molecular mechanism of NASH progression is not well understood, a widely held hypothesis is that fat accumulation is the primary driver of the disease. Therefore, diacylglycerol O-acyltransferase 2 (DGAT2), a key enzyme in triglyceride synthesis, has been explored as a NASH target. RNAi-based therapeutics is revolutionizing the treatment of liver diseases, with recent chemical advances supporting long-term gene silencing with single subcutaneous administration. Here, we identified a hyper-functional, fully chemically stabilized GalNAc-conjugated small interfering RNA (siRNA) targeting DGAT2 (Dgat2-1473) that, upon injection, elicits up to 3 months of DGAT2 silencing (>80%-90%, p < 0.0001) in wild-type and NSG-PiZ "humanized" mice. Using an obesity-driven mouse model of NASH (ob/ob-GAN), Dgat2-1473 administration prevents and reverses triglyceride accumulation (>85%, p < 0.0001) without increased accumulation of diglycerides, resulting in significant improvement of the fatty liver phenotype. However, surprisingly, the reduction in liver fat did not translate into a similar impact on inflammation and fibrosis. Thus, while Dgat2-1473 is a practical, long-lasting silencing agent for potential therapeutic attenuation of liver steatosis, combinatorial targeting of a second pathway may be necessary for therapeutic efficacy against NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Modelos Animais de Doenças , Fibrose , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade/genética , Obesidade/terapia , Terapêutica com RNAi , Triglicerídeos/metabolismo , Triglicerídeos/uso terapêutico
11.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935646

RESUMO

siRNAs comprise a class of drugs that can be programmed to silence any target gene. Chemical engineering efforts resulted in development of divalent siRNAs (di-siRNAs), which support robust and long-term efficacy in rodent and nonhuman primate brains upon direct cerebrospinal fluid (CSF) administration. Oligonucleotide distribution in the CNS is nonuniform, limiting clinical applications. The contribution of CSF infusion placement and dosing regimen on relative accumulation, specifically in the context of large animals, is not well characterized. To our knowledge, we report the first systemic, comparative study investigating the effects of 3 routes of administration - intrastriatal (i.s.), i.c.v., and intrathecal catheter to the cisterna magna (ITC) - and 2 dosing regimens - single and repetitive via an implanted reservoir device - on di-siRNA distribution and accumulation in the CNS of Dorset sheep. CSF injections (i.c.v. and ITC) resulted in similar distribution and accumulation across brain regions. Repeated dosing increased homogeneity, with greater relative deep brain accumulation. Conversely, i.s. administration supported region-specific delivery. These results suggest that dosing regimen, not CSF infusion placement, may equalize siRNA accumulation and efficacy throughout the brain. These findings inform the planning and execution of preclinical and clinical studies using siRNA therapeutics in the CNS.


Assuntos
Terapia Genética/métodos , RNA Interferente Pequeno/administração & dosagem , Animais , Vias de Administração de Medicamentos , Ovinos
12.
Nucleic Acids Res ; 49(21): 12069-12088, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850120

RESUMO

Oligonucleotides is an emerging class of chemically-distinct therapeutic modalities, where extensive chemical modifications are fundamental for their clinical applications. Inter-nucleotide backbones are critical to the behaviour of therapeutic oligonucleotides, but clinically explored backbone analogues are, effectively, limited to phosphorothioates. Here, we describe the synthesis and bio-functional characterization of an internucleotide (E)-vinylphosphonate (iE-VP) backbone, where bridging oxygen is substituted with carbon in a locked stereo-conformation. After optimizing synthetic pathways for iE-VP-linked dimer phosphoramidites in different sugar contexts, we systematically evaluated the impact of the iE-VP backbone on oligonucleotide interactions with a variety of cellular proteins. Furthermore, we systematically evaluated the impact of iE-VP on RNA-Induced Silencing Complex (RISC) activity, where backbone stereo-constraining has profound position-specific effects. Using Huntingtin (HTT) gene causative of Huntington's disease as an example, iE-VP at position 6 significantly enhanced the single mismatch discrimination ability of the RISC without negative impact on silencing of targeting wild type htt gene. These findings suggest that the iE-VP backbone can be used to modulate the activity and specificity of RISC. Our study provides (i) a new chemical tool to alter oligonucleotide-enzyme interactions and metabolic stability, (ii) insight into RISC dynamics and (iii) a new strategy for highly selective SNP-discriminating siRNAs.


Assuntos
Doença de Huntington/genética , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Alelos , Humanos , Organofosfonatos
13.
Mol Ther Nucleic Acids ; 21: 384-393, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32650236

RESUMO

RNA interference (RNAi) is a potent mechanism that silences mRNA and protein expression in all cells and tissue types. RNAi is known to exert many of its functional effects in the cytoplasm, and thus, the cellular localization of target mRNA may impact observed potency. Here, we demonstrate that cell identity has a profound impact on accessibility of apolipoprotein E (ApoE) mRNA to RNAi. We show that, whereas both neuronal and glial cell lines express detectable ApoE mRNA, in neuronal cells, ApoE mRNA is not targetable by RNAi. Screening of a panel of thirty-five chemically modified small interfering RNAs (siRNAs) did not produce a single hit in a neuronal cell line, whereas up to fifteen compounds showed strong efficacy in glial cells. Further investigation of the cellular localization of ApoE mRNA demonstrates that ApoE mRNA is partially spliced and preferentially localized to the nucleus (∼80%) in neuronal cells, whereas more than 90% of ApoE mRNA is cytoplasmic in glial cells. Such an inconsistency in intracellular localization and splicing might provide an explanation for functional differences in RNAi compounds. Thus, cellular origin might have an impact on accessibility of mRNA to RNAi and should be taken into account during the screening process.

14.
Mol Ther Nucleic Acids ; 21: 266-277, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32610253

RESUMO

Small interfering RNAs (siRNAs) have the potential to treat a broad range of diseases. siRNAs need to be extensively chemically modified to improve their bioavailability, safety, and stability in vivo. However, chemical modifications variably impact target silencing for different siRNA sequences, making the activity of chemically modified siRNA difficult to predict. Here, we systematically evaluated the impact of 3' terminal modifications (2'-O-methyl versus 2'-fluoro) on guide strands of different length and showed that 3' terminal 2'-O-methyl modification negatively impacts activity for >60% of siRNA sequences tested but only in the context of 20- and not 19- or 21-nt-long guide strands. These results indicate that sequence, modification pattern, and structure may cooperatively affect target silencing. Interestingly, the introduction of an extra 2'-fluoro modification in the seed region at guide strand position 5, but not 7, may partially compensate for the negative impact of 3' terminal 2'-O-methyl modification. Molecular modeling analysis suggests that 2'-O-methyl modification may impair guide strand interactions within the PAZ domain of argonaute-2, which may affect target recognition and cleavage, specifically when guide strands are 20-nt long. Our findings emphasize the complex nature of modified RNA-protein interactions and contribute to design principles for chemically modified siRNAs.

15.
Nat Biotechnol ; 37(8): 884-894, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31375812

RESUMO

Sustained silencing of gene expression throughout the brain using small interfering RNAs (siRNAs) has not been achieved. Here we describe an siRNA architecture, divalent siRNA (di-siRNA), that supports potent, sustained gene silencing in the central nervous system (CNS) of mice and nonhuman primates following a single injection into the cerebrospinal fluid. Di-siRNAs are composed of two fully chemically modified, phosphorothioate-containing siRNAs connected by a linker. In mice, di-siRNAs induced the potent silencing of huntingtin, the causative gene in Huntington's disease, reducing messenger RNA and protein throughout the brain. Silencing persisted for at least 6 months, with the degree of gene silencing correlating to levels of guide strand tissue accumulation. In cynomolgus macaques, a bolus injection of di-siRNA showed substantial distribution and robust silencing throughout the brain and spinal cord without detectable toxicity and with minimal off-target effects. This siRNA design may enable RNA interference-based gene silencing in the CNS for the treatment of neurological disorders.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Huntingtina/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Proteína Huntingtina/genética , Camundongos , Mutação , RNA Mensageiro , RNA Interferente Pequeno/metabolismo
16.
iScience ; 16: 230-241, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31195240

RESUMO

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in serum-deprived conditions are enriched in six protein pathways and one lipid class, dilysocardiolipin. Inspired by these findings, we engineer an "artificial exosome," in which the incorporation of one lipid (dilysocardiolipin) and three proteins (Rab7, Desmoplakin, and AHSG) into conventional neutral liposomes produces vesicles that mimic cargo delivering activity of natural exosomes.

17.
Nucleic Acids Res ; 47(3): 1070-1081, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30535404

RESUMO

Efficient delivery of therapeutic RNA beyond the liver is the fundamental obstacle preventing its clinical utility. Lipid conjugation increases plasma half-life and enhances tissue accumulation and cellular uptake of small interfering RNAs (siRNAs). However, the mechanism relating lipid hydrophobicity, structure, and siRNA pharmacokinetics is unclear. Here, using a diverse panel of biologically occurring lipids, we show that lipid conjugation directly modulates siRNA hydrophobicity. When administered in vivo, highly hydrophobic lipid-siRNAs preferentially and spontaneously associate with circulating low-density lipoprotein (LDL), while less lipophilic lipid-siRNAs bind to high-density lipoprotein (HDL). Lipid-siRNAs are targeted to lipoprotein receptor-enriched tissues, eliciting significant mRNA silencing in liver (65%), adrenal gland (37%), ovary (35%), and kidney (78%). Interestingly, siRNA internalization may not be completely driven by lipoprotein endocytosis, but the extent of siRNA phosphorothioate modifications may also be a factor. Although biomimetic lipoprotein nanoparticles have been explored for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.


Assuntos
Lipídeos/química , RNA Interferente Pequeno/farmacocinética , Animais , Proteínas Sanguíneas/metabolismo , Feminino , Células HeLa , Hepatócitos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Rim/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Interferência de RNA , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/química , Receptores de LDL/metabolismo , Distribuição Tecidual
18.
Nucleic Acids Res ; 47(3): 1082-1096, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30544191

RESUMO

Small interfering RNA (siRNA)-based therapies are proving to be efficient for treating liver-associated disorders. However, extra-hepatic delivery remains challenging, limiting therapeutic siRNA utility. We synthesized a panel of fifteen lipid-conjugated siRNAs and systematically evaluated the impact of conjugate on siRNA tissue distribution and efficacy. Generally, conjugate hydrophobicity defines the degree of clearance and the liver-to-kidney distribution profile. In addition to primary clearance tissues, several conjugates achieve significant siRNA accumulation in muscle, lung, heart, adrenal glands and fat. Oligonucleotide distribution to extra-hepatic tissues with some conjugates was significantly higher than with cholesterol, a well studied conjugate, suggesting that altering conjugate structure can enhance extra-hepatic delivery. These conjugated siRNAs enable functional gene silencing in lung, muscle, fat, heart and adrenal gland. Required levels for productive silencing vary (5-200 µg/g) per tissue, suggesting that the chemical nature of conjugates impacts tissue-dependent cellular/intracellular trafficking mechanisms. The collection of conjugated siRNA described here enables functional gene modulation in vivo in several extra-hepatic tissues opening these tissues for gene expression modulation. A systemic evaluation of a panel of conjugated siRNA, as reported here, has not previously been investigated and shows that chemical engineering of lipid siRNAs is essential to advance the RNA therapeutic field.


Assuntos
Lipídeos/química , RNA Interferente Pequeno/farmacocinética , Animais , Carbocianinas , Colesterol , Ácidos Graxos , Feminino , Corantes Fluorescentes , Rim/metabolismo , Fígado/metabolismo , Camundongos , Fosforilcolina , Interferência de RNA , RNA Interferente Pequeno/síntese química , Distribuição Tecidual
19.
Nat Biotechnol ; 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451990

RESUMO

Preeclampsia is a placentally induced hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality to mothers and fetuses. Clinical manifestations of preterm preeclampsia result from excess circulating soluble vascular endothelial growth factor receptor FLT1 (sFLT1 or sVEGFR1) of placental origin. Here we identify short interfering RNAs (siRNAs) that selectively silence the three sFLT1 mRNA isoforms primarily responsible for placental overexpression of sFLT1 without reducing levels of full-length FLT1 mRNA. Full chemical stabilization in the context of hydrophobic modifications enabled productive siRNA accumulation in the placenta (up to 7% of injected dose) and reduced circulating sFLT1 in pregnant mice (up to 50%). In a baboon preeclampsia model, a single dose of siRNAs suppressed sFLT1 overexpression and clinical signs of preeclampsia. Our results demonstrate RNAi-based extrahepatic modulation of gene expression with nonformulated siRNAs in nonhuman primates and establish a path toward a new treatment paradigm for patients with preterm preeclampsia.

20.
Nat Commun ; 9(1): 2641, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980686

RESUMO

RNA-based drugs depend on chemical modifications to increase potency and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. Here, we explore chemical modifications at all positions of the crRNA guide and tracrRNA cofactor. We identify several heavily modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2'-OH groups) that are functional in human cells. These designs will contribute to Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Genoma Humano/genética , RNA Guia de Cinetoplastídeos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Loci Gênicos , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...