Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(1): 39-49, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30452867

RESUMO

Samples of ultrafine particle matter mass (PM0.1) were collected over 12 months at three cities in California: Los Angeles, East Oakland, San Pablo, and over six months at Fresno. Molecular markers adjusted for volatility and reactivity were used to calculate PM0.1 source contributions. Wood burning was a significant source of PM0.1 organic carbon (OC) during the winter months in northern California (17-47%) but made smaller contributions in other months (0-8%) and was minor in all seasons in Los Angeles (0-5%), except December (17%) during holiday celebrations. Meat cooking was the largest source of PM0.1 OC across all sites (13-29%), followed by gasoline combustion (7-21%). Motor oil and diesel fuel combustion made smaller contributions to PM0.1 OC (3-10% and 3-7%, respectively). Unresolved sources accounted for 22-56% of the PM0.1 OC. The lack of a clear seasonal profile for this unresolved OC suggests that it may be a primary source rather than secondary organic aerosol (SOA). PM0.1 elemental carbon (EC) was dominated by diesel fuel combustion with less than 15% contribution from other sources. All sources besides wood smoke exhibited relatively constant seasonal source contributions to PM0.1 OC reflecting approximately constant emissions over the annual cycle. Annual-average source contributions to PM0.1 OC calculated with traditional molecular markers were similar to the source contributions calculated with the modified molecular markers that account for volatility and reactivity.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Carbono , Cidades , Monitoramento Ambiental , Los Angeles , Estações do Ano
2.
Atmos Environ (1994) ; 144: 325-334, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27667959

RESUMO

The dithiothreitol (DTT) assay is widely used to measure the oxidative potential of particulate matter. Results are typically presented in mass-normalized units (e.g., pmols DTT lost per minute per microgram PM) to allow for comparison among samples. Use of this unit assumes that the mass-normalized DTT response is constant and independent of the mass concentration of PM added to the DTT assay. However, based on previous work that identified non-linear DTT responses for copper and manganese, this basic assumption (that the mass-normalized DTT response is independent of the concentration of PM added to the assay) should not be true for samples where Cu and Mn contribute significantly to the DTT signal. To test this we measured the DTT response at multiple PM concentrations for eight ambient particulate samples collected at two locations in California. The results confirm that for samples with significant contributions from Cu and Mn, the mass-normalized DTT response can strongly depend on the concentration of PM added to the assay, varying by up to an order of magnitude for PM concentrations between 2 and 34 µg mL-1. This mass dependence confounds useful interpretation of DTT assay data in samples with significant contributions from Cu and Mn, requiring additional quality control steps to check for this bias. To minimize this problem, we discuss two methods to correct the mass-normalized DTT result and we apply those methods to our samples. We find that it is possible to correct the mass-normalized DTT result, although the correction methods have some drawbacks and add uncertainty to DTT analyses. More broadly, other DTT-active species might also have non-linear concentration-responses in the assay and cause a bias. In addition, the same problem of Cu- and Mn-mediated bias in mass-normalized DTT results might affect other measures of acellular redox activity in PM and needs to be addressed.

3.
J Air Waste Manag Assoc ; 63(10): 1163-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24282968

RESUMO

Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile organic compounds (VOCs) commonly emitted from AFOs. Three different NMHC analyzers were tested for response to laboratory generated VOCs, and two were tested in the field at a commercial poultry facility. The NMHC analyzers tested included gas chromatography/flame ionization detector (GC/FID), photoacoustic infrared (PA-IR) and photoionization detector (PID). The GC/FID NHHC analyzer was linear in response to nonpolar compounds, but detector response to polar oxygenated compounds were lower than expected due to poor peak shape on the column. The PA-IR NMHC instrument responded well to the calibration standard (propane), methanol, and acetone, but it performed poorly with larger alcohols and ketones and acetonitrile. The PA-IR response varied between compounds in similar compound classes. The PID responded poorly to many of the most abundant VOCs at AFOs, and it underreported alcohols by > 70%. In the field monitoring study, total NMHC concentrations were calculated from sum total of VOC determined using EPA Methods TO-15 and TO-17 with GC-MS compared to results from NMHC analyzers. NMHC GC/FID values were greater than the values calculated from the individual compound measurements. This indicated the presence of small hydrocarbons not measured with TO-15 or TO-17 such as propane. The PA-IR response was variable, but it was always lower than the GC/FID response. Results suggest that improved approaches are needed to accurately determine the VOC profile and NMHC emission rates from AFOs.


Assuntos
Poluentes Atmosféricos/química , Criação de Animais Domésticos , Hidrocarbonetos/química , Compostos Orgânicos Voláteis/química , Animais , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Abrigo para Animais
4.
Ann Plast Surg ; 70(6): 720-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22395047

RESUMO

BACKGROUND: Reactive oxygen species (ROS) have been shown to be important in wound healing by promoting angiogenesis (also mentioned by Ushio-Fukai and Nakamura). Likewise ROS have been implicated by toxicological studies as a primary mechanism of air pollution-associated morbidity. We sought to determine how exposure to a reactive diesel exhaust chemical (phenanthrenequinone [PQ]), which promotes formation of ROS and is considered an air pollutant, would affect wound healing. Since wound healing is compromised in diabetic (db) individuals, we examined the effects of PQ on wound healing in a db mouse model. METHODS: db mice consumed PQ-containing chow for a short period (2 weeks) before wounding and through generations. Wound closure rates and wound vascularization were evaluated 10 days after wounding. The effects of PQ on endothelial cell proliferation and ROS generation in vitro were also measured. RESULTS: db mice exposed to short-term PQ and PQ-exposed first-generation db mice demonstrated the highest closure rates, significantly better than control db mice (P < 0.05). Furthermore, a higher concentration of PQ in sera of db mice coincides with the higher rate of closure. PQ was also shown to produce ROS in cell culture and stimulate endothelial cell proliferation at nanomolar concentrations. Second- and third-generation db mice exposed to PQ did not show improved wound healing. CONCLUSIONS: This study suggests that the free radical-generating air pollutant PQ enhances wound closure in the db mouse model possibly by stimulating angiogenesis, as suggested by in vitro results. We speculate that PQ may increase oxidation levels systemically and therefore help modulate inflammation at the wound site. Alternatively, antioxidant mechanisms recruited for wound healing may interfere with PQ metabolism and elimination as it accumulates in sera. Generational resistance to improve wound healing in PQ-exposed db mice could also be due to disturbances in metabolism caused by continuous exposure. In either case, these results introduce a new perspective on the effects of air pollution on wound healing.


Assuntos
Poluentes Atmosféricos/farmacologia , Diabetes Mellitus Experimental , Fenantrenos/farmacologia , Cicatrização/efeitos dos fármacos , Poluentes Atmosféricos/sangue , Ração Animal , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos , Fenantrenos/administração & dosagem , Fenantrenos/sangue , Cicatrização/fisiologia
5.
J Phys Chem A ; 116(24): 6264-81, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22483091

RESUMO

An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.


Assuntos
Peróxidos/química , Radicais Livres/síntese química , Radicais Livres/química , Peróxidos/síntese química
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(30): 3592-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22024390

RESUMO

A method was developed for the quantification of 1-4 ring quinones in urine samples using liquid-liquid extraction followed by analysis with gas chromatography-mass spectrometry. Detection limits for the ten quinones analyzed are in the range 1-2 nmol dm(-3). The potential use of this approach to monitor urinary quinone levels was then evaluated in urine samples from both Sprague-Dawley rats and human subjects. Rats were exposed to 9,10-phenanthraquinone (PQ) by both injection and ingestion (mixed with solid food and dissolved in drinking water). Urinary levels of PQ were found to increase by up to a factor of ten compared to control samples, and the levels were found to depend on both the dose and duration of exposure. Samples were also collected and analyzed periodically from human subjects over the course of six months. Eight quinones were detected in the samples, with levels varying from below the detection limit up to 3 µmol dm(-3).


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido/métodos , Quinonas/urina , Adulto , Animais , Biomarcadores/urina , Crisenos/urina , Exposição Ambiental , Feminino , Humanos , Naftoquinonas/urina , Fenantrenos/administração & dosagem , Fenantrenos/urina , Quinonas/isolamento & purificação , Ratos , Ratos Sprague-Dawley
7.
Phys Chem Chem Phys ; 12(38): 12101-11, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20694250

RESUMO

Rate coefficients, k, for the gas-phase reaction of the OH radical with (CH(3))(3)COOH (tert-butyl hydroperoxide) were measured as a function of temperature (206-375 K) and pressure (25-200 Torr (He, N(2))). Rate coefficients were measured under pseudo-first-order conditions using pulsed laser photolysis to produce OH and laser induced fluorescence (PLP-LIF) to measure the OH temporal profile. Two independent methods were used to determine the gas-phase infrared cross sections of (CH(3))(3)COOH, absolute pressure and chemical titration, that were used to determine the (CH(3))(3)COOH concentration in the LIF reactor. The temperature dependence of the rate coefficients is described, within the measurement precision, by the Arrhenius expression k(1)(T) = (7.0 ± 1.0) × 10(-13) exp[(485 ± 20)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (3.58 ± 0.54) × 10(-12) cm(3) molecule(-1) s(-1). The uncertainties are 2σ (95% confidence level) and include estimated systematic errors. UV absorption cross sections of (CH(3))(3)COOH were determined at 185, 214, 228, and 254 nm and over the wavelength range 210-300 nm. The OH quantum yield following the 248 nm pulsed laser photolysis of (CH(3))(3)COOH was measured relative to the OH quantum yields of H(2)O(2) and HNO(3) using PLP-LIF and found to be near unity.


Assuntos
Radical Hidroxila/química , Fotólise , terc-Butil Hidroperóxido/química , Cinética , Pressão , Temperatura
8.
J Agric Food Chem ; 55(14): 5620-5, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17567026

RESUMO

An analytical method was developed to quantify levels of acetaldehyde in wine samples. The method utilizes headspace solid-phase microextraction with on-fiber derivatization using O-(pentafluorobenzyl)hydroxylamine and quantification by gas chromatography with flame ionization detection. The technique showed good sensitivity and reproducibility in samples of Chardonnay, Petite Sirah, and Merlot wines containing acetaldehyde at levels below the sensory threshold (40-100 ppm). The method was used to monitor acetaldehyde concentrations during the micro-oxygenation of Merlot wine in a 141 L pilot-plant experiment and a 2400 L full-scale study. In both experiments, levels of acetaldehyde remained constant for several weeks before increasing at rates of the order of 1 ppm/day. Variations in the levels of acetaldehyde present are discussed within the context of the underlying chemical reactions.


Assuntos
Acetaldeído/análise , Oxigênio/administração & dosagem , Vinho/análise , Cromatografia Gasosa , Manipulação de Alimentos/métodos
9.
Environ Sci Technol ; 40(16): 4880-6, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16955881

RESUMO

The mass loadings of quinones and their ability to generate reactive oxygen species (ROS) were investigated in total suspended particulate samples collected in Fresno, CA, over a 12-month period. Particles were collected on Teflon filters and were analyzed for the presence of 12 quinones containing one to four aromatic rings by gas chromatography with mass spectrometry. Measured levels are generally greater than mass loadings reported at other locations. The mass loadings were highest during winter months and were strongly anticorrelated with temperature. ROS generation was investigated by measuring the rate of hydrogen peroxide production from the reaction of laboratory standards and ambient samples with dithiothreitol (DTT). ROS generation from ambient samples shows a strong positive correlation with the mass loadings of the three most reactive quinones and may account for all of the ROS formed in the DTT test.


Assuntos
Aerossóis , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/efeitos adversos , Preparações Farmacêuticas/análise , Quinonas/análise , Espécies Reativas de Oxigênio , Ditiotreitol/farmacologia , Filtração , Radicais Livres , Modelos Químicos , Tamanho da Partícula , Politetrafluoretileno , Quinonas/química , Estações do Ano , Fatores de Tempo
10.
J Phys Chem A ; 109(11): 2514-24, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16833553

RESUMO

The vinoxy radical, a common intermediate in gas-phase alkene ozonolysis, reacts with O2 to form a chemically activated alpha-oxoperoxy species. We report CBS-QB3 energetics for O2 addition to the parent (*CH2CHO, 1a), 1-methylvinoxy (*CH2COCH3, 1b), and 2-methylvinoxy (CH3*CHCHO, 1c) radicals. CBS-QB3 predictions for peroxy radical formation agree with experimental data, while the G2 method systematically overestimates peroxy radical stability. RRKM/master equation simulations based on CBS-QB3 data are used to estimate the competition between prompt isomerization and thermalization for the peroxy radicals derived from 1a, 1b, and 1c. The lowest energy isomerization pathway for radicals 4a and 4c (derived from 1a and 1c, respectively) is a 1,4-shift of the acyl hydrogen requiring 19-20 kcal/mol. The resulting hydroperoxyacyl radical decomposes quantitatively to form *OH. The lowest energy isomerization pathway for radical 4b (derived from 1b) is a 1,5-shift of a methyl hydrogen requiring 26 kcal/mol. About 25% of 4a, but only approximately 5% of 4c, isomerizes promptly at 1 atm pressure. Isomerization of 4b is negligible at all pressures studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...