Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Criança , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratória/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38663815

RESUMO

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: To determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during three years of observation in 480 participants in the Severe Asthma Research Program (SARP)-3. RESULTS: Over three years, EPX levels in asthma patients were higher than normal in 27-31% of serum samples and 36-53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts < 150 cells/uL and 42% of participants with blood eosinophil counts 150-299 cells/uL. Patients with persistently high sputum EPX values for three years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 asthma patients who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSION: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38651338

RESUMO

Secreted deoxyribonucleases (DNases), such as DNase-1 and DNase-IL3, degrade extracellular DNA, and endogenous DNases have roles in resolving airway inflammation and guarding against autoimmune responses to nucleotides. Subsets of patients with asthma have high airway DNA levels, but information about DNase activity in health and in asthma is lacking. To characterize DNase activity in health and in asthma, we developed a novel kinetic assay using a Taqman probe sequence that is quickly cleaved by DNase-I to produce a large product signal. We used this kinetic assay to measure DNase activity in sputum from participants in the Severe Asthma Research Program (SARP)-3 (n=439) and from healthy controls (n=89). We found that DNase activity was lower than normal in asthma (78.7 RFU/min vs 120.4 RFU/min, p<0.0001). Compared to asthma patients with sputum DNase activity levels in the upper tertile activity levels, those in the lower tertile of sputum DNase activity were characterized clinically by more severe disease and pathologically by airway eosinophilia and airway mucus plugging. Carbamylation of DNase-I, a post translational modification that can be mediated by eosinophil peroxidase, inactivated DNase-I. In summary, a Taqman probe-based DNase activity assay uncovers low DNase activity in the asthma airway which is associated with more severe disease and airway mucus plugging and may be caused, at least in part, by eosinophil-mediated carbamylation.

4.
Ann Am Thorac Soc ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568439

RESUMO

RATIONALE: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). OBJECTIVES: To determine whether air pollution increases prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation area (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. METHODS: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. 10-year exposure to particulate matter < 2.5 µm (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone (O3) prior to enrollment CTs (completed between 2010-2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk of ILA or increased percent HAA (between -600 and -250 Hounsfield units) respectively. We assessed for effect modification by MUC5B-promoter polymorphism (GT/TT vs GG at rs3705950), smoking status, sex, and percent emphysema. RESULTS: Among 1272 participants with COPD assessed for HAA, 424 were current smokers, 249 were carriers of the variant MUC5B allele (GT/TT). 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (p-value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (p-value interaction term for NOx = 0.05, NO2 = 0.01, and O3 = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had increased risk of ILA (Relative Risk [RR] per 26ppb NOx 2.41; 95% Confidence Interval [CI] 0.97 to 6.0) and RR per 4 µg·m-3 PM2.5 1.43; 95% CI 0.93 to 2.2). With higher exposure to NO2, former smokers had increased risk of ILA (RR per 10ppb 1.64; 95% CI 1.0 to 2.7). CONCLUSIONS: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.

5.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253462

RESUMO

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Assuntos
Asma , Fator A de Crescimento do Endotélio Vascular , Adulto , Humanos , Proteômica , Fator 2 de Crescimento de Fibroblastos , Citocinas/metabolismo , Lavagem Broncoalveolar , Quimiocinas , Líquido da Lavagem Broncoalveolar
6.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38127464

RESUMO

BACKGROUNDInformation about the size, airway location, and longitudinal behavior of mucus plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to rationally design muco-active treatments.METHODSCT lung scans from 57 patients with asthma were analyzed to quantify mucus plug size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-processing pipeline to generate size and location information that was related to measures of airflow.RESULTSThe length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm length defined short ("stubby", ≤12 mm) and long ("stringy", >12 mm) plug phenotypes. High mucus plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized predominantly to airway generations 6-9, and 47% of plugs in baseline scans persisted in the same airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations had greater effects on spirometry measures than plugs in smaller distal generations, and a model of airflow that estimates the increased airway resistance attributable to plugs predicted a greater effect for proximal generations and more numerous mucus plugs.CONCLUSIONPersistent mucus plugs in proximal airway generations occur in asthma and demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-active drugs or bronchoscopy.TRIAL REGISTRATIONClinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01716494, and NCT01760915.FUNDINGAstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi-Genzyme-Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical Centers beyond the third year of patient follow-up. These companies had no role in study design or data analysis, and the only restriction on the funds was that they be used to support the SARP initiative.


Assuntos
Asma , Humanos , Broncoscopia , Pulmão/diagnóstico por imagem , Muco , Tomografia Computadorizada por Raios X
7.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113166

RESUMO

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Assuntos
Asma , Eosinofilia , Obesidade , Tomografia Computadorizada por Raios X , Humanos , Asma/diagnóstico por imagem , Asma/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Adulto , Eosinofilia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Índice de Massa Corporal
9.
Sci Rep ; 13(1): 8228, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217548

RESUMO

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Fumar/efeitos adversos , Volume Expiratório Forçado , Lavagem Broncoalveolar , Biomarcadores
10.
J Allergy Clin Immunol ; 152(1): 94-106.e12, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893862

RESUMO

BACKGROUND: Type 1 (T1) inflammation (marked by IFN-γ expression) is now consistently identified in subsets of asthma cohorts, but how it contributes to disease remains unclear. OBJECTIVE: We sought to understand the role of CCL5 in asthmatic T1 inflammation and how it interacts with both T1 and type 2 (T2) inflammation. METHODS: CCL5, CXCL9, and CXCL10 messenger RNA expression from sputum bulk RNA sequencing, as well as clinical and inflammatory data were obtained from the Severe Asthma Research Program III (SARP III). CCL5 and IFNG expression from bronchoalveolar lavage cell bulk RNA sequencing was obtained from the Immune Mechanisms in Severe Asthma (IMSA) cohort and expression related to previously identified immune cell profiles. The role of CCL5 in tissue-resident memory T-cell (TRM) reactivation was evaluated in a T1high murine severe asthma model. RESULTS: Sputum CCL5 expression strongly correlated with T1 chemokines (P < .001 for CXCL9 and CXCL10), consistent with a role in T1 inflammation. CCL5high participants had greater fractional exhaled nitric oxide (P = .009), blood eosinophils (P < .001), and sputum eosinophils (P = .001) in addition to sputum neutrophils (P = .001). Increased CCL5 bronchoalveolar lavage expression was unique to a previously described T1high/T2variable/lymphocytic patient group in the IMSA cohort, with IFNG trending with worsening lung obstruction only in this group (P = .083). In a murine model, high expression of the CCL5 receptor CCR5 was observed in TRMs and was consistent with a T1 signature. A role for CCL5 in TRM activation was supported by the ability of the CCR5 inhibitor maraviroc to blunt reactivation. CONCLUSION: CCL5 appears to contribute to TRM-related T1 neutrophilic inflammation in asthma while paradoxically also correlating with T2 inflammation and with sputum eosinophilia.


Assuntos
Asma , Quimiocina CCL5 , Animais , Humanos , Camundongos , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Eosinófilos , Inflamação/metabolismo , Neutrófilos , Escarro
11.
J Allergy Clin Immunol ; 151(6): 1513-1524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36796454

RESUMO

BACKGROUND: Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE: We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS: Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS: We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS: Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.


Assuntos
Asma , Qualidade de Vida , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/diagnóstico , Células Epiteliais/metabolismo , Corticosteroides/uso terapêutico
12.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L32-L37, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342131

RESUMO

Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.


Assuntos
Nicotina , Doença Pulmonar Obstrutiva Crônica , Humanos , Nicotina/metabolismo , Cotinina/análise , Cotinina/metabolismo , Fumantes , Sistema Respiratório/metabolismo , Biomarcadores/análise
13.
Chest ; 163(3): 515-528, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343688

RESUMO

BACKGROUND: The Global Initiative for Chronic Obstructive Lung Disease (GOLD) considers blood eosinophil counts < 100 cells/µL (BEC≤100) in people with COPD to predict poor inhaled corticosteroid (ICS) responsiveness. However, the BEC≤100 phenotype is inadequately characterized, especially in advanced COPD. RESEARCH QUESTION: Are there differences between GOLD group D patients with high BEC and those with low BEC regarding baseline characteristics and longitudinal outcomes? STUDY DESIGN AND METHODS: We used multivariable mixed models and logistic regression to contrast clinical characteristics and outcomes of BEC≤100 vs BEC > 100 (BEC100+) in all subjects with COPD (n = 1,414) and GOLD group D subjects (n = 185) not receiving ICS. RESULTS: We identified n = 485 with BEC≤100 (n = 61 GOLD group D) and n = 929 people with BEC100+ (n = 124 GOLD group D). BEC≤100 status was stable at 6 weeks and approximately 52 weeks (intraclass correlations of 0.78 and 0.71, respectively). Compared with BEC100+, BEC≤100 comprised more women, with greater current smoking, and less frequent childhood asthma. Among all analyzed participants, the two BEC-defined subsets showed similar rates of lung function decline (mean slope, BEC≤100 vs BEC100+, -50 vs -39 mL/y; P = .140), exacerbations (0.40 vs 0.36/y; P = .098), subsequent ICS initiation (2.5% vs 4.4%; P = .071), and mortality (7.8% vs 8.4%; P = .715). However, in GOLD group D, people with BEC≤100 showed higher exacerbation rates within 365 days of enrollment (0.62 vs 0.33/y; P = .002) and total follow-up (1.16 vs 0.83/y; P = .014). They also had greater lung function decline (mean slope of -68 mL/y vs -23 mL/y; P = .036) and had greater emphysema at baseline (voxels < 950 Hounsfield units at total lung capacity of 7.46% vs 4.61%; P = .029). INTERPRETATION: In non-ICS-treated GOLD group D COPD, people with BEC≤100 had more baseline emphysema, prospective exacerbations, and lung function decline. Our analysis has identified a particularly vulnerable subpopulation of people with COPD, suggesting the need for studies focused specifically on their therapeutic treatment. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS: gov.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Feminino , Humanos , Eosinófilos , Estudos Prospectivos , Corticosteroides/uso terapêutico , Enfisema Pulmonar/tratamento farmacológico , Progressão da Doença , Administração por Inalação
14.
Am J Respir Crit Care Med ; 207(4): 438-451, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36066606

RESUMO

Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.


Assuntos
Asma , Uteroglobina , Humanos , Asma/genética , Asma/metabolismo , Biomarcadores , Células Epiteliais/metabolismo , Inflamação/metabolismo , Estudos Prospectivos , Estudos Retrospectivos , RNA Mensageiro/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
15.
Am J Respir Crit Care Med ; 206(9): 1096-1106, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687105

RESUMO

Rationale: The role of obesity-associated insulin resistance (IR) in airflow limitation in asthma is uncertain. Objectives: Using data in the Severe Asthma Research Program 3 (SARP-3), we evaluated relationships between homeostatic measure of IR (HOMA-IR), lung function (cross-sectional and longitudinal analyses), and treatment responses to bronchodilators and corticosteroids. Methods: HOMA-IR values were categorized as without (<3.0), moderate (3.0-5.0), or severe (>5.0). Lung function included FEV1 and FVC measured before and after treatment with inhaled albuterol and intramuscular triamcinolone acetonide and yearly for 5 years. Measurements and Main Results: Among 307 participants in SARP-3, 170 (55%) were obese and 140 (46%) had IR. Compared with patients without IR, those with IR had significantly lower values for FEV1 and FVC, and these lower values were not attributable to obesity effects. Compared with patients without IR, those with IR had lower FEV1 responses to ß-adrenergic agonists and systemic corticosteroids. The annualized decline in FEV1 was significantly greater in patients with moderate IR (-41 ml/year) and severe IR (-32 ml/year,) than in patients without IR (-13 ml/year, P < 0.001 for both comparisons). Conclusions: IR is common in asthma and is associated with lower lung function, accelerated loss of lung function, and suboptimal lung function responses to bronchodilator and corticosteroid treatments. Clinical trials in patients with asthma and IR are needed to determine if improving IR might also improve lung function.


Assuntos
Asma , Resistência à Insulina , Humanos , Estudos Transversais , Broncodilatadores/uso terapêutico , Pulmão , Corticosteroides/uso terapêutico , Obesidade/complicações , Volume Expiratório Forçado
16.
Metabolites ; 12(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629872

RESUMO

Chronic obstructive pulmonary disease (COPD) is a disease with marked metabolic disturbance. Previous studies have shown the association between single metabolites and lung function for COPD, but whether a combination of metabolites could predict phenotype is unknown. We developed metabolomic severity scores using plasma metabolomics from the Metabolon platform from two US cohorts of ever-smokers: the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) (n = 648; training/testing cohort; 72% non-Hispanic, white; average age 63 years) and the COPDGene Study (n = 1120; validation cohort; 92% non-Hispanic, white; average age 67 years). Separate adaptive LASSO (adaLASSO) models were used to model forced expiratory volume at one second (FEV1) and MESA-adjusted lung density using 762 metabolites common between studies. Metabolite coefficients selected by the adaLASSO procedure were used to create a metabolomic severity score (metSS) for each outcome. A total of 132 metabolites were selected to create a metSS for FEV1. The metSS-only models explained 64.8% and 31.7% of the variability in FEV1 in the training and validation cohorts, respectively. For MESA-adjusted lung density, 129 metabolites were selected, and metSS-only models explained 59.0% of the variability in the training cohort and 17.4% in the validation cohort. Regression models including both clinical covariates and the metSS explained more variability than either the clinical covariate or metSS-only models (53.4% vs. 46.4% and 31.6%) in the validation dataset. The metabolomic pathways for arginine biosynthesis; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine pathway were enriched by adaLASSO metabolites for FEV1. This is the first demonstration of a respiratory metabolomic severity score, which shows how a metSS can add explanation of variance to clinical predictors of FEV1 and MESA-adjusted lung density. The advantage of a comprehensive metSS is that it explains more disease than individual metabolites and can account for substantial collinearity among classes of metabolites. Future studies should be performed to determine whether metSSs are similar in younger, and more racially and ethnically diverse populations as well as whether a metabolomic severity score can predict disease development in individuals who do not yet have COPD.

17.
Nature ; 604(7905): 337-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355021

RESUMO

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Assuntos
Dermatite Atópica , PPAR gama , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Medicina de Precisão , Análise de Sequência de RNA , Células Th2/metabolismo
18.
Thorax ; 77(5): 452-460, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580195

RESUMO

INTRODUCTION: Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS: We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS: PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS: Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.


Assuntos
Asma , Eosinófilos , Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Basófilos/patologia , Eosinófilos/patologia , Humanos , Inflamação , Pulmão , Escarro , Esteroides/uso terapêutico
19.
Chest ; 161(5): 1239-1249, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801592

RESUMO

BACKGROUND: Improved understanding of the pathways associated with airway pathophysiologic features in COPD will identify new predictive biomarkers and novel therapeutic targets. RESEARCH QUESTION: Which physiologic pathways are altered in the airways of patients with COPD and will predict exacerbations? STUDY DESIGN AND METHODS: We applied a mass spectrometric panel of metabolomic biomarkers related to mucus hydration and inflammation to sputa from the multicenter Subpopulations and Intermediate Outcome Measures in COPD Study. Biomarkers elevated in sputa from patients with COPD were evaluated for relationships to measures of COPD disease severity and their ability to predict future exacerbations. RESULTS: Sputum supernatants from 980 patients were analyzed: 77 healthy nonsmokers, 341 smokers with preserved spirometry, and 562 patients with COPD (178 with Global Initiative on Chronic Obstructive Lung Disease [GOLD] stage 1 disease, 303 with GOLD stage 2 disease, and 81 with GOLD stage 3 disease) were analyzed. Biomarkers from multiple pathways were elevated in COPD and correlated with sputum neutrophil counts. Among the most significant analytes (false discovery rate, 0.1) were sialic acid, hypoxanthine, xanthine, methylthioadenosine, adenine, and glutathione. Sialic acid and hypoxanthine were associated strongly with measures of disease severity, and elevation of these biomarkers was associated with shorter time to exacerbation and improved prediction models of future exacerbations. INTERPRETATION: Biomarker evaluation implicated pathways involved in mucus hydration, adenosine metabolism, methionine salvage, and oxidative stress in COPD airway pathophysiologic characteristics. Therapies that target these pathways may be of benefit in COPD, and a simple model adding sputum-soluble phase biomarkers improves prediction of pulmonary exacerbations. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS: gov.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Escarro , Biomarcadores/análise , Humanos , Hipoxantinas/análise , Ácido N-Acetilneuramínico/análise , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Escarro/química
20.
Lancet Respir Med ; 9(11): 1241-1254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34058148

RESUMO

BACKGROUND: We previously described the contributions of increased total airway mucin concentrations to the pathogenesis and diagnosis of the chronic bronchitic component of chronic obstructive pulmonary disease (COPD). Here, we investigated the relative contribution of each of the major airway gel-forming mucins, MUC5AC and MUC5B, to the initiation, progression, and early diagnosis of airways disease in COPD. METHODS: SPIROMICS was a multicentre, observational study in patients aged 40-80 years recruited from six clinical sites and additional subsites in the USA. In this analysis, MUC5AC and MUC5B were quantitated by stable isotope-labelled mass spectrometry in induced sputum samples from healthy never-smokers, ever-smokers at risk for COPD, and ever-smokers with COPD. Participants were extensively characterised using results from questionnaires, such as the COPD assessment test (CAT) and St George's Respiratory Questionnaire; quantitative CT, such as residual volume/total lung capacity ratio (RV/TLC) and parametric response mapping-functional small airway disease (PRM-fSAD); and pulmonary function tests, such as FEV1, forced vital capacity (FVC), and forced expiratory flow, midexpiratory phase (FEF25-75%). Absolute concentrations of both MUC5AC and MUC5B were related to cross-sectional (baseline, initial visit) and 3-year follow-up longitudinal data, including lung function, small airways obstruction, prospective acute exacerbations, and smoking status as primary outcomes. This study is registered with ClinicalTrials.gov (NCT01969344). FINDINGS: This analysis included 331 participants (mean age 63 years [SEM 9·40]), of whom 40 were healthy never-smokers, 90 were at-risk ever-smokers, and 201 were ever-smokers with COPD. Increased MUC5AC concentrations were more reliably associated with manifestations of COPD than were MUC5B concentrations, including decreased FEV1 and FEF25-75%, and increased prospective exacerbation frequency, RV/TLC, PRM-fSAD, and COPD assessment scores. MUC5AC concentrations were more reactive to cigarette smoke exposure than were MUC5B concentrations. Longitudinal data from 3-year follow-up visits generated a multivariate-adjusted odds ratio for two or more exacerbations of 1·24 (95% CI 1·04-1·47, p=0·015) for individuals with high baseline MUC5AC concentration. Increased MUC5AC, but not MUC5B, concentration at baseline was a significant predictor of FEV1, FEV1/FVC, FEF25-75%, and CAT score decline during the 3-year follow-up. Moreover, current smokers in the at-risk group showed raised MUC5AC concentrations at initial visits and decreased lung function over 3 years. By contrast, former smokers in the at-risk group showed normal MUC5AC concentrations at the initial visit and preserved lung function over 3 years. INTERPRETATION: These data indicate that increased MUC5AC concentration in the airways might contribute to COPD initiation, progression, exacerbation risk, and overall pathogenesis. Compared with MUC5B, greater relative changes in MUC5AC concentrations were observed as a function of COPD severity, and MUC5AC concentration seems to be an objective biomarker to detect disease in at-risk and pre-COPD individuals. These data suggest that MUC5AC-producing pathways could be potential targets for future therapeutic strategies. Thus, MUC5AC could be a novel biomarker for COPD prognosis and for testing the efficacy of therapeutic agents. FUNDING: National Institutes of Health; National Heart, Lung, and Blood Institute.


Assuntos
Mucina-5AC , Mucina-5B , Doença Pulmonar Obstrutiva Crônica , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Progressão da Doença , Volume Expiratório Forçado , Humanos , Pulmão , Pessoa de Meia-Idade , Mucina-5AC/análise , Mucina-5B/análise , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...