Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38394648

RESUMO

The purpose of this study was to examine the effects of plant- versus animal-based food intake before exercise on arterial function and subsequent aerobic exercise capacity. Eleven healthy adult males (mean age, 22.6 ± 1.8 years) participated in this study. A plant- or animal-based randomized meal type crossover comparison was conducted on separate days with a uniform protein, fat, and carbohydrate balance. Both carotid-femoral pulse wave velocity (cfPWV), femoral-ankle pulse wave velocity (faPWV), and brachial artery flow-mediated dilatation (FMD) were measured as indexes of aortic and peripheral arterial stiffness and vascular endothelial function, respectively, before and at 120 min after the meal. After these measurements, maximal oxygen uptake was assessed using a graded power test on an electronically braked cycle ergometer. The results revealed that cfPWV was significantly lower, whereas FMD was significantly higher, at 120 min after compared with before the plant-based meal (p = 0.01 and 0.02, respectively). By contrast, cfPWV and FMD did not change at 120 min after compared with before the animal-based meal. In addition, faPWV did not change at 120 min after compared with before the meal for either meal type. Maximal oxygen uptake was higher in the plant- than in the animal-based meal type (p = 0.02). These results suggest that pre-exercise plant-based food intake may improve central arterial stiffness and vascular endothelial function, which may have favorable implications for aerobic exercise capacity.

2.
Heart Vessels ; 39(2): 123-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777673

RESUMO

Endothelin-1 (ET-1), produced by vascular endothelial cells, plays a pivotal role in the regulation of vascular tone. Isomaltulose, a naturally occurring sweetener and structural isomer of sucrose, reduces postprandial hyperglycemia, but its effect on arteriosclerosis due to hyperglycemia is unknown. The effects of 12 weeks of isomaltulose administration on ET-1 levels, a peptide that regulates arterial stiffness, blood pressure, and vascular tone, were tested before and after an oral glucose tolerance test. Fifty-four healthy middle-aged and older adults (30 men and 24 women) were divided into two groups: (1) a 25 g isomaltulose jelly drink intake group (Group I, 27 participants, mean age 55 ± 1 years) and (2) a sucrose jelly drink intake group (Group S, 27 participants, mean age 55 ± 1 years), each consuming isomaltulose or sucrose daily for 12 weeks, and a randomized, controlled study was conducted. Participants visited the laboratory before the intervention and 4, 8, and 12 weeks after the intervention to measure carotid-femoral (cf) and brachial-ankle (ba) pulse wave velocity (PWV), systolic blood pressure (BP), plasma glucose (PG), insulin, and ET-1 levels before and 60 and 120 min after a 75-g OGTT. baPWV, and ET-1 levels before intervention were significantly increased after 75-g OGTT compared to before 75-g OGTT in both groups (p < 0.05). The post-intervention baPWV, and ET-1 levels were significantly increased after 75-g OGTT in Group S compared to before 75-g OGTT (p < 0.05), whereas no significant changes were observed in Group I. These results suggest that consumption of isomaltulose, which has a lower GI than sucrose, is more effective in preventing the increases in systemic arterial stiffness associated with postprandial hyperglycemia in healthy middle-aged and older adults.


Assuntos
Hiperglicemia , Isomaltose/análogos & derivados , Rigidez Vascular , Masculino , Pessoa de Meia-Idade , Idoso , Humanos , Feminino , Glicemia , Rigidez Vascular/fisiologia , Análise de Onda de Pulso , Células Endoteliais , Hiperglicemia/prevenção & controle , Pressão Sanguínea/fisiologia , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...