Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 107(1): 134-45, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988348

RESUMO

The C36 CHARMM lipid force field has been extended to include sphingolipids, via a combination of high-level quantum mechanical calculations on small molecule fragments, and validation by extensive molecular dynamics simulations on N-palmitoyl and N-stearoyl sphingomyelin. NMR data on these two molecules from several studies in bilayers and micelles played a strong role in the development and testing of the force field parameters. Most previous force fields for sphingomyelins were developed before the availability of the detailed NMR data and relied on x-ray diffraction of bilayers alone for the validation; these are shown to be too dense in the bilayer plane based on published chain order parameter data from simulations and experiments. The present simulations reveal O-H:::O-P intralipid hydrogen bonding occurs 99% of the time, and interlipid N-H:::O=C (26-29%, depending on the lipid) and N-H:::O-H (17-19%). The interlipid hydrogen bonds are long lived, showing decay times of 50 ns, and forming strings of lipids, and leading to reorientational correlation time of nearly 100 ns. The spontaneous radius of curvature for pure N-palmitoyl sphingomyelin bilayers is estimated to be 43-100 Å, depending on the assumptions made in assigning a bending constant; this unusual positive curvature for a two-tailed neutral lipid is likely associated with hydrogen bond networks involving the NH of the sphingosine group.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Esfingomielinas/química , Ligação de Hidrogênio
2.
J Phys Chem B ; 117(25): 7546-53, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23738792

RESUMO

The structure of the O-methyl glycoside of the naturally occurring 6-O-[(R)-1-carboxyethyl]-α-D-galactopyranose, C10H18O8, has been determined by X-ray crystallography at 100 K, supplementing the previously determined structure obtained at 293 K (Acta Crystallogr.1996, C52, 2285-2287). Molecular dynamics simulations of this glycoside were performed in the crystal environment with different numbers of units cells included in the primary simulation system at both 100 and 293 K. The calculated unit cell parameters and the intramolecular geometries (bonds, angles, and dihedrals) agree well with experimental results. Atomic fluctuations, including B-factors and anisotropies, are in good agreement with respect to the relative values on an atom-by-atom basis. In addition, the fluctuations increase with increasing simulation system size, with the simulated values converging to values lower than those observed experimentally indicating that the simulation model is not accounting for all possible contributions to the experimentally observed B-factors, which may be related to either the simulation time scale or size. In the simulations, the hydroxyl group of O7 is found to form bifurcated hydrogen bonds with O6 and O8 of an adjacent molecule, with the interactions dominated by the HO7-O6 interaction. Quantum mechanical calculations support this observation.


Assuntos
Galactosídeos/química , Glicosídeos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Temperatura
3.
J Chem Theory Comput ; 8(2): 759-776, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22685386

RESUMO

Presented is an extension of the CHARMM additive all-atom carbohydrate force field to enable the modeling of phosphate and sulfate linked to carbohydrates. The parameters are developed in a hierarchical fashion using model compounds containing the key atoms in the full carbohydrates. Target data for parameter optimization included full two-dimensional energy surfaces defined by the glycosidic dihedral angle pairs in the phosphate/sulfate model compound analogs of hexopyranose monosaccharide phosphates and sulfates, as determined by quantum mechanical (QM) MP2/cc-pVTZ single point energies on MP2/6-31+G(d) optimized structures. In order to achieve balanced, transferable dihedral parameters for the dihedral angles, surfaces for all possible anomeric and conformational states were included during the parametrization process. In addition, to model physiologically relevant systems both the mono- and di-anionic charged states were studied for the phosphates. This resulted in over 7000 MP2/cc-pVTZ//MP2/6-31G+(d) model compound conformational energies which, supplemented with QM geometries, were the main target data for the parametrization. Parameters were validated against crystals of relevant monosaccharide derivatives obtained from the Cambridge Structural Database (CSD) and larger systems, namely inositol-(tri/tetra/penta) phosphates non-covalently bound to the pleckstrin homology (PH) domain and oligomeric chondroitin sulfate in solution and in complex with cathepsin K protein.

4.
J Chem Theory Comput ; 7(10): 3162-3180, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22125473

RESUMO

Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.

5.
J Phys Chem B ; 115(3): 597-608, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21158455

RESUMO

An investigation of the conformational properties of methyl ß-maltoside, methyl α-cellobioside, and methyl ß-cellobioside disaccharides using NMR spectroscopy and molecular dynamics (MD) techniques, is presented. Emphasis is placed on validation of a recently presented force field for hexopyranose disaccharides followed by elucidation of the conformational properties of two different types of glycosidic linkages, α-(1 → 4) and ß-(1 → 4). Both gas-phase and aqueous-phase simulations are performed to gain insight into the effect of solvent on the conformational properties. A number of transglycosidic J-coupling constants and proton-proton distances are calculated from the simulations and are used to identify the percent sampling of the three glycosidic conformations (syn, anti-φ, and anti-ψ) and, in turn, describe the flexibility around the glycosidic linkage. The results show the force field to be in overall good agreement with experiment, although some very small limitations are evident. Subsequently, a thorough hydrogen bonding analysis is performed to obtain insights into the conformational properties of the disaccharides. In methyl ß-maltoside, competition between HO2'-O3 intramolecular hydrogen bonding and intermolecular hydrogen bonding of those groups with solvent leads to increased sampling of syn, anti-φ, and anti-ψ conformations and better agreement with NMR J-coupling constants. In methyl α- and ß-cellobioside, O5'-HO6 and HO2'-O3 hydrogen bonding interactions are in competition with intermolecular hydrogen bonding involving the solvent molecules. This competition leads to retention of the O5'-HO3 hydrogen bond and increased sampling of the syn region of the φ/ψ map. Moreover, glycosidic torsions are correlated to the intramolecular hydrogen bonding occurring in the molecules. The present results verify that in the ß-(1 → 4)-linkage intramolecular hydrogen bonding in the aqueous phase is due to the decreased ability of water to successfully compete for the O5' and HO3 hydrogen bonding moieties, in contrast to that occurring between the O5' and HO6 atoms in this α-(1 → 4)-linkage.


Assuntos
Configuração de Carboidratos , Dissacarídeos/química , Glucosídeos/química , Estrutura Molecular , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular
6.
J Phys Chem B ; 114(39): 12501-7, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20831149

RESUMO

Proper simulation of dynamic properties, including molecular diffusion, is an important goal of empirical force fields. However, the widely used TIP3P water model does not reproduce the experimental viscosity of water. Consequently, scaling of simulated diffusion constants of solutes in aqueous solutions is required to effectively compare them with experiment. It is proposed that scaling by the ratio of viscosities of model and real water is appropriate in the regime where the concentration dependence of simulated and experimental solution viscosities is parallel. With this ansatz, viscosity scaling can be carried out for glucose and trehalose up to 20 wt % for simulations carried out with the CHARMM additive carbohydrate force field C35 and TIP3P water; above this value, the concentration dependence of simulated viscosities lags that of experiment, and scaling is not advised. Scaled translational diffusion constants for glucose and the disaccharides trehalose, maltose, and melibiose at low concentration agree nearly quantitatively with experiment, as do NMR (13)C T(1)'s for glucose, trehalose, and maltose; these results support the use of C35 for simulations of sugar transport properties at low concentration. At high concentrations the scaled diffusion constants for glucose and trehalose underestimate and overestimate experiment, respectively. Hydrodynamic bead model calculations indicate a hydration level of approximately 1 water/hydroxyl for glucose. Patterns for the disaccharides are more complicated, though trehalose binds 0.5 to 1 more water than does maltose depending on the analysis.


Assuntos
Modelos Moleculares , Difusão , Glucose/química , Maltose/química , Rotação , Trealose/química , Viscosidade , Água/química
7.
J Phys Chem B ; 113(37): 12466-76, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19694450

RESUMO

An additive all-atom empirical force field for aldopentofuranoses, methyl-aldopentofuranosides (Me-aldopentofuranosides), and fructofuranose carbohydrates, compatible with existing CHARMM carbohydrate parameters, is presented. Building on existing parameters transferred from cyclic ethers and hexopyranoses, parameters were further developed using target data for complete furanose carbohydrates as well as O-methyl tetrahydrofuran. The bond and angle equilibrium parameters were adjusted to reproduce target geometries from a survey of furanose crystal structures, and dihedral parameters were fit to over 1700 quantum mechanical (QM) MP2/cc-pVTZ//MP2/6-31G(d) conformational energies. The conformational energies were for a variety of complete furanose monosaccharides and included two-dimensional ring pucker energy surfaces. Bonded parameter optimization led to the correct description of the ring pucker for a large set of furanose compounds, while furanose-water interaction energies and distances reproduced QM HF/6-31G(d) results for a number of furanose monosaccharides, thereby validating the nonbonded parameters. Crystal lattice unit cell parameters and volumes, aqueous-phase densities, and aqueous NMR ring pucker and exocyclic data were used to validate the parameters in condensed-phase environments. Conformational sampling analysis of the ring pucker and exocyclic group showed excellent agreement with experimental NMR data, demonstrating that the conformational energetics in aqueous solution are accurately described by the optimized force field. Overall, the parameters reproduce available experimental data well and are anticipated to be of utility in future computational studies of carbohydrates, including in the context of proteins, nucleic acids, and/or lipids when combined with existing CHARMM biomolecular force fields.


Assuntos
Frutose/química , Glicosídeos/química , Modelos Moleculares , Pentoses/química , Configuração de Carboidratos , Teoria Quântica , Reprodutibilidade dos Testes , Água/química
8.
J Chem Theory Comput ; 5(5): 1315-1327, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20160980

RESUMO

Parametrization of the additive all-atom CHARMM force field for acyclic polyalcohols, acyclic carbohydrates and inositol is conducted. Initial parameters were transferred from the alkanes and hexopyranose carbohydrates, with subsequent development and optimization of parameters unique to the molecules considered in this study. Using the model compounds acetone and acetaldehyde, nonbonded parameters for carbonyls were optimized targeting quantum mechanical interaction data for solute-water pairs and pure solvent thermodynamic data. Bond and angle parameters were adjusted by comparing optimized geometries to small molecule crystal survey data and by performing vibrational analyses on acetone, acetaldehyde and glycerol. C-C-C-C, C-C-C-O, C-C-OH and O-C-C-O torsional parameters for polyol chains were fit to quantum mechanical dihedral potential energy scans comprising over 1500 RIMP2/cc-pVTZ//MP2/6-31G(d) conformations using an automated Monte Carlo simulated annealing procedure. Comparison of computed condensed-phase data, including crystal lattice parameters and densities, NMR proton-proton couplings, densities and diffusion coefficients of aqueous solutions, to experimental data validated the optimized parameters. Parameter development for these compounds proved particularly challenging because of the flexibility of the acyclic sugars and polyalcohols as well as the intramolecular hydrogen bonding between vicinal hydroxyls for all of the compounds. The newly optimized additive CHARMM force field parameters are anticipated to be of utility for atomic level of detail simulations of acyclic polyalcohols, acyclic carbohydrates and inositol in solution.

9.
J Chem Theory Comput ; 5(9): 2353-2370, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20161005

RESUMO

We present an extension of the CHARMM hexopyranose monosaccharide additive all-atom force field to enable modeling of glycosidic-linked hexopyranose polysaccharides. The new force field parameters encompass 1→1, 1→2, 1→3, 1→4, and 1→6 hexopyranose glycosidic linkages, as well as O-methylation at the C(1) anomeric carbon, and are developed to be consistent with the CHARMM all-atom biomolecular force fields for proteins, nucleic acids, and lipids. The parameters are developed in a hierarchical fashion using model compounds containing the key atoms in the full carbohydrates, in particular O-methyl-tetrahydropyran and glycosidic-linked dimers consisting of two molecules of tetrahyropyran or one of tetrahydropyran and one of cyclohexane. Target data for parameter optimization include full two-dimensional energy surfaces defined by the Φ/Ψ glycosidic dihedral angles in the disaccharide analogs as determined by quantum mechanical MP2/cc-pVTZ single point energies on MP2/6-31G(d) optimized structures (MP2/cc-pVTZ//MP2/6-31G(d)). In order to achieve balanced, transferable dihedral parameters for the Φ/Ψ glycosidic dihedral angles, surfaces for all possible chiralities at the ring carbon atoms involved in the glycosidic linkages are considered, resulting in over 5000 MP2/cc-pVTZ//MP2/6-31G(d) conformational energies. Also included as target data are vibrational frequencies, pair interaction energies and distances with water molecules, and intramolecular geometries including distortion of the glycosidic valence angle as a function of the glycosidic dihedral angles. The model-compound optimized force field parameters are validated on full disaccharides through comparison of molecular dynamics results to available experimental data. Good agreement is achieved with experiment for a variety of properties including crystal cell parameters and intramolecular geometries, aqueous densities, and aqueous NMR coupling constants associated with the glycosidic linkage. The newly-developed parameters allow for the modeling of linear, branched, and cyclic hexopyranose glycosides both alone and in heterogenous systems including proteins, nucleic acids and/or lipids when combined with existing CHARMM biomolecular force fields.

10.
J Am Chem Soc ; 130(40): 13264-73, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18781753

RESUMO

This paper describes the results of a 1D and 2D NMR spectroscopy study of a palindromic 8-base pair PNA duplex GGCATGCC in H2O and H2O-D2O solutions. The (1)H NMR peaks have been assigned for most of the protons of the six central base pairs, as well as for several amide protons of the backbone. The resulting 36 interbase and base-backbone distance restraints were used together with Watson-Crick restraints to generate the PNA duplex structure in the course of 10 independent simulated annealing runs followed by restrained molecular dynamics (MD) simulations in explicit water. The resulting PNA structures correspond to a P-type helix with helical parameters close to those observed in the crystal structures of PNA. Based on the current limited number of restraints obtained from NMR spectra, alternative structures obtained by MD from starting PNA models based on DNA cannot be ruled out and are also discussed.


Assuntos
Ácidos Nucleicos Peptídicos/química , Simulação por Computador , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
11.
J Am Chem Soc ; 130(35): 11752-61, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18693722

RESUMO

The effects of structural fluctuations on charge transfer in double-stranded DNA and peptide nucleic acid (PNA) are investigated. A palindromic sequence with two guanine bases that play the roles of hole donor and acceptor, separated by a bridge of two adenine bases, was analyzed using combined molecular dynamics (MD) and quantum-chemical methods. Surprisingly, electronic structure calculations on individual MD snapshots show significant frontier orbital electronic population on the bridge in approximately 10% of the structures. Electron-density delocalization to the bridge is found to be gated by fluctuations of the covalent conjugated bond structure of the aromatic rings of the nucleic bases. It is concluded, therefore, that both thermal hopping and superexchange should contribute significantly to charge transfer even in short DNA/PNA fragments. PNA is found to be more flexible than DNA, and this flexibility is predicted to produce larger rates of charge transfer.


Assuntos
DNA/química , Ácidos Nucleicos Peptídicos/química , Conformação de Ácido Nucleico , Teoria Quântica
12.
Coord Chem Rev ; 252(3-4): 384-394, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21057592

RESUMO

Theoretical studies of proton-coupled electron transfer (PCET) reactions for model systems provide insight into fundamental concepts relevant to bioenergetics. A dynamical theoretical formulation for vibronically nonadiabatic PCET reactions has been developed. This theory enables the calculation of rates and kinetic isotope effects, as well as the pH and temperature dependences, of PCET reactions. Methods for calculating the vibronic couplings for PCET systems have also been developed and implemented. These theoretical approaches have been applied to a wide range of PCET reactions, including tyrosyl radical generation in a tyrosine-bound rhenium polypyridyl complex, phenoxyl/phenol and benzyl/toluene self-exchange reactions, and hydrogen abstraction catalyzed by the enzyme lipoxygenase. These applications have elucidated some of the key underlying physical principles of PCET reactions. The tools and concepts derived from these theoretical studies provide the foundation for future theoretical studies of PCET in more complex bioenergetic systems such as Photosystem II.

13.
Cardiovasc Hematol Agents Med Chem ; 5(4): 295-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17979692

RESUMO

The clinical syndrome congestive heart failure (CHF) has its origins rooted in a salt-avid state mediated largely by effector hormones of the renin-angiotensin-aldosterone system (RAAS). In addition, a systemic illness accompanies chronic RAAS activation. Its features include: the presence of oxidative stress in diverse tissues coupled with a reduction in activity of endogenous oxidoreductases, such as Cu/Zn-superoxide dismutase and Se-glutathione peroxidase; a proinflammatory phenotype with activated immune cells and increased circulating levels of proinflammatory cytokines; and a catabolic state with loss of soft tissues and bone that eventuates in a wasting syndrome termed cardiac cachexia. Pathogenic mechanisms and pathophysiologic expressions of this illness are under active investigation. In this context and less well appreciated is the importance of a dyshomeostasis of various minerals, including Ca2+, Mg2+, Zn, and Se, and their impact on the systemic and progressive nature of CHF. A convergence of multiple factors, some hormonal (e.g., aldosteronism, secondary hyperparathyroidism, hypovitaminosis D), others pharmacologic (e.g., loop diuretics, angiotensin-converting enzyme inhibitors), predispose to the heightened excretion of these minerals in urine and feces while parathyroid hormone promotes intracellular Ca2+ overloading in diverse tissues. The importance of these macro- and micronutrients to the appearance of oxidative stress, compromised antioxidant defenses, an immunostimulatory state and tissue wasting needs to be critically addressed. So, too, must the potential for nutriceuticals, complementary to today's pharmaceuticals, to assist in the overall management of CHF.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hiperaldosteronismo/fisiopatologia , Aldosterona/fisiologia , Cálcio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Magnésio/metabolismo , Hormônio Paratireóideo/metabolismo , Sistema Renina-Angiotensina , Selênio/metabolismo , Vitamina D/metabolismo , Zinco/metabolismo
14.
J Am Chem Soc ; 129(1): 187-96, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17199298

RESUMO

The dynamical behavior and the temperature dependence of the kinetic isotope effects (KIEs) are examined for the proton-coupled electron transfer reaction catalyzed by the enzyme soybean lipoxygenase. The calculations are based on a vibronically nonadiabatic formulation that includes the quantum mechanical effects of the active electrons and the transferring proton, as well as the motions of all atoms in the complete solvated enzyme system. The rate constant is represented by the time integral of a probability flux correlation function that depends on the vibronic coupling and on time correlation functions of the energy gap and the proton donor-acceptor mode, which can be calculated from classical molecular dynamics simulations of the entire system. The dynamical behavior of the probability flux correlation function is dominated by the equilibrium protein and solvent motions and is not significantly influenced by the proton donor-acceptor motion. The magnitude of the overall rate is strongly influenced by the proton donor-acceptor frequency, the vibronic coupling, and the protein/solvent reorganization energy. The calculations reproduce the experimentally observed magnitude and temperature dependence of the KIE for the soybean lipoxygenase reaction without fitting any parameters directly to the experimental kinetic data. The temperature dependence of the KIE is determined predominantly by the proton donor-acceptor frequency and the distance dependence of the vibronic couplings for hydrogen and deuterium. The ratio of the overlaps of the hydrogen and deuterium vibrational wavefunctions strongly impacts the magnitude of the KIE but does not significantly influence its temperature dependence. For this enzyme reaction, the large magnitude of the KIE arises mainly from the dominance of tunneling between the ground vibronic states and the relatively large ratio of the overlaps between the corresponding hydrogen and deuterium vibrational wavefunctions. The weak temperature dependence of the KIE is due in part to the dominance of the local component of the proton donor-acceptor motion.


Assuntos
Lipoxigenase/química , Prótons , Proteínas de Soja/química , Transporte de Elétrons , Entropia , Isótopos/química , Cinética , Temperatura
15.
J Chem Phys ; 122(1): 14505, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15638672

RESUMO

This paper presents a general theoretical formulation for proton-coupled electron transfer (PCET) reactions. The solute is represented by a multistate valence bond model, and the active electrons and transferring proton(s) are treated quantum mechanically. This formulation enables the classical or quantum mechanical treatment of the proton donor-acceptor vibrational mode, as well as the dynamical treatment of the proton donor-acceptor mode and the solvent. Nonadiabatic rate expressions are presented for PCET reactions in a number of well-defined limits for both dielectric continuum and molecular representations of the environment. The dynamical rate expressions account for correlations between the fluctuations of the proton donor-acceptor distance and the nonadiabatic PCET coupling. The quantities in the rate expressions can be calculated with a dielectric continuum model or a molecular dynamics simulation of the full system. The significance of the quantum and dynamical effects of the proton donor-acceptor mode is illustrated with applications to model PCET systems.


Assuntos
Transporte de Elétrons , Elétrons , Transferência de Energia , Modelos Químicos , Modelos Moleculares , Prótons , Simulação por Computador , Movimento (Física) , Teoria Quântica , Vibração
16.
J Phys Chem B ; 109(39): 18565-74, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16853391

RESUMO

Fundamental aspects of proton-coupled electron transfer (PCET) reactions in solution are analyzed with molecular dynamics simulations for a series of model systems. The analysis addresses the impact of the solvent reorganization energy, the proton donor-acceptor mode vibrational frequency, and the distance dependence of the nonadiabatic coupling on the dynamics of the reaction and the magnitude of the rate. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The time dependence of the probability flux correlation function is determined mainly by the solvent reorganization energy and is not significantly influenced by the proton donor-acceptor frequency or the distance dependence of the nonadiabatic coupling. The magnitude of the PCET rate becomes greater as the solvent reorganization energy decreases, the proton donor-acceptor frequency decreases, and the distance dependence of the nonadiabatic coupling increases. The approximations underlying a previously derived analytical PCET rate expression are also investigated. The short-time approximation for the solvent is valid for these types of systems. In addition, solvent damping effects on the proton donor-acceptor motion are not significant on the time scale of the probability flux. The rates calculated from the molecular dynamics simulations agree well with those calculated from the analytical rate expression.


Assuntos
Termodinâmica , Modelos Teóricos , Vibração
17.
J Am Chem Soc ; 126(18): 5763-75, 2004 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15125669

RESUMO

The proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase-1 is studied with a multistate continuum theory that represents the transferring hydrogen nucleus as a quantum mechanical wave function. The inner-sphere reorganization energy of the iron cofactor is calculated with density functional theory, and the outer-sphere reorganization energy of the protein is calculated with the frequency-resolved cavity model for conformations obtained with docking simulations. Both classical and quantum mechanical treatments of the proton donor-acceptor vibrational motion are presented. The temperature dependence of the calculated rates and kinetic isotope effects is in agreement with the experimental data. The weak temperature dependence of the rates is due to the relatively small free energy barrier arising from a balance between the reorganization energy and the reaction free energy. The unusually high deuterium kinetic isotope effect of 81 is due to the small overlap of the reactant and product proton vibrational wave functions and the dominance of the lowest energy reactant and product vibronic states in the tunneling process. The temperature dependence of the kinetic isotope effect is strongly influenced by the proton donor-acceptor distance with the dominant contribution to the overall rate. This dominant proton donor-acceptor distance is significantly smaller than the equilibrium donor-acceptor distance and is determined by a balance between the larger coupling and the smaller Boltzmann probability as the distance decreases. Thus, the proton donor-acceptor vibrational motion plays a vital role in decreasing the dominant donor-acceptor distance relative to its equilibrium value to facilitate the proton-coupled electron transfer reaction.


Assuntos
Elétrons , Glycine max/enzimologia , Lipoxigenase/metabolismo , Prótons , Transporte de Elétrons , Gases/química , Ferro/metabolismo , Cinética , Ligantes , Lipoxigenase/química , Modelos Moleculares , Estrutura Molecular , Probabilidade , Conformação Proteica , Temperatura , Termodinâmica , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...