Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16861, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803033

RESUMO

Ammonium is an essential component of the nitrogen cycle, which is essential for nitrogen cycling in ecosystems. On the other hand, ammonium pollution in water poses a great threat to the ecosystem and human health. Accurate and timely determination of ammonium content is of great importance for environmental management and ensuring the safety of water supply. Here we report a highly sensitive electrochemical sensor for ammonium in water samples. The modified electrode is based on the incorporation of silver nitrate (AgNO3) into a carbon paste embedded with 1-aminoanthraquinone and supported by multi-walled carbon nanotubes, which are commercially available. A potential of 0.75 V is applied to the modified electrode, followed by activation in hydrochloric acid. The modified electrode was used for square wave voltammetry of ammonium in water in the potential range of - 0.4-0.2 V. The performance of ammonium analysis was determined in terms of square wave frequency, square wave amplitude and concentration of electrolyte solution (sodium sulphate). The calculation of the surface area according to the Randles-Sevcik equation resulted in the largest surface area for the Ag/pAAQ/MWCNTs/CPE. The modified electrode exhibited a linear range of 5-100 µM NH4+ in 0.1 M Na2SO4 with a detection limit of 0.03 µM NH4+ (3σ). In addition, the modified electrode showed high precision with an RSD value of 9.93% for 10 repeated measurements. No interfering effect was observed at twofold and tenfold additive concentrations of foreign ions. Good recoveries were obtained in the analysis of tap and mineral water after spiking with a concentration of ammonium ions.

2.
R Soc Open Sci ; 10(8): 221621, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564062

RESUMO

In this study, silver nanoparticles (AgNPs)-based electrochemical sensor has been reported for assessing bromocresol green (BG) in river water. Firstly, AgNPs were greenly produced using the aqueous extract of Ficus sycomorus leaves. Then, the AgNP-modified glassy carbon (GC) electrode was prepared using the sticking method. AgNPs were characterized using transmission electron microscope (TEM), X-ray diffraction (XRD), square wave voltammetry (SWV) and scanning electron microscope (SEM). TEM and SEM were used for determining the size of AgNPs before and after adsorption, respectively. The results show that there was an increase in AgNP size from 20 to 30 nm. Additionally, XRD was used for characterizing the crystal nature of AgNPs, while SWV exhibited a characteristic oxidation peak of AgNPs at 0.06 V. Moreover, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for characterizing the catalytic effect of AgNPs. BG as a targeted pollutant was detected at AgNPs/GC based on its oxidation through proton and electron transfer. Two peaks corresponding to the monomer and polymer oxidation were detected. The monomer- and polymer-based sensors have revealed a linear range of 2.9 × 10-5 to 2.1 × 10-4 mole l-1 and low detection limits (LODs) of 1.5 × 10-5 and 1.3 × 10-5 mole l-1, respectively.

3.
RSC Adv ; 12(8): 4988-5000, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425500

RESUMO

Selenite (Se4+), a significant source of water pollution above the permissible limits, is considered a valuable metal by environmentalists. In this study, we described a novel electrochemical sensor that utilized a carbon paste electrode (CPE) that was modified using multiwall carbon nanotubes (MWCNTs) and poly(1-aminoanthraquinone) (p-AAQ) for finding Se4+ in water samples. Electrochemical quantification of Se4+ depends on the formation of a selective complex (piaselenol) with p-AAQ. In this work, we prepared a CPE modified by physical embedding of MWCNTs and 1-aminoanthraquione (AAQ), while the polymer film was formed by anodic polymerization of AAQ by applying a constant potential of 0.75 V in 0.1 M HCl for 20 s followed by cyclic voltammetry (CV) from -0.2 to 1.4 V for 20 cycles. The modified CPE was used for differential pulse voltammetry (DPV) of Se4+ in 0.1 M H2SO4 from 0 to 0.4 V with a characteristic peak at 0.27 V. Further, the proposed sensor was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy (EIS). The analytical conditions regarding the electrode performance and voltammetric measurements were optimized, with the accumulation time and potential, supporting electrolyte, differential-pulse period/time, and amplitude. The EIS results indicated that the p-AAQ/MWCNTs-modified CPE sensor (p-AAQ/MWCNTs/CPE) that also exhibited low charge-transfer resistance (R ct) toward the anodic stripping of Se4+, exhibited good analytical performance toward different concentrations of Se4+ in a linear range of 5-50 µg L-1 Se4+ with a limit of determination (LOD) of 1.5 µg L-1 (3σ). Furthermore, differential-pulse voltammetry was employed to determine different concentrations of Se4+ in a linear range of 1-50 µg L-1 Se4+, and an LOD value of 0.289 µg L-1 was obtained. The proposed sensor demonstrated good precision (relative standard deviation = 4.02%) at a Se4+ concentration of 5 µg L-1. Moreover, the proposed sensor was applied to analyze Se4+ in wastewater samples that were spiked with Se, and it achieved good recovery values.

4.
RSC Adv ; 9(4): 1849-1858, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516099

RESUMO

Oxidation of some small organic fuels such as methanol (MeOH), ethanol (EtOH) and ethylene glycol (EG) was carried out in an alkaline medium using palladium (Pd)-platinum (Pt) nanoparticles/poly1,2-diaminoanthraquinone/glassy carbon (p1,2-DAAQ/GC) catalyst electrodes. Pd and Pt were incorporated into the p1,2-DAAQ/GC electrode using the cyclic voltammetry (CV) technique. The obtained Pd/p1,2-DAAQ/GC, Pt/p1,2-DAAQ/GC, Pt/Pd/p1,2-DAAQ/GC and Pd/Pt/p1,2-DAAQ/GC nanocatalyst electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and CV methods. Real active surface area (A real) achieved by carbon monoxide (CO) adsorption using differential electrochemical mass spectroscopy (DEMS) technique. The electrochemical activity was evaluated and normalized to A real per metal loading mass. The electrocatalytic oxidation of the small organic fuels at the prepared nanocatalyst electrodes was studied in 1.0 M NaOH solutions by CV and chronoamperometric (CA) techniques. Pt/Pd/p1,2-DAAQ/GC nanocatalyst electrode exhibited enhanced catalytic activity, better durability and higher tolerance to carbon monoxide generated in the oxidation reaction when compared with the other three studied nanocatalysts. The present investigation suggests that the studied nanocatalysts can be successfully applied in direct oxidation of small organic fuels, especially MeOH.

5.
RSC Adv ; 8(12): 6346-6355, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35540423

RESUMO

The electrochemical behavior of phenolic isomers hydroquinone (HQ), catechol (CC) and resorcinol (RC) was examined in poly(1,5-diaminonaphthalene)/glassy carbon-modified electrode (P1,5-DAN/GC M.E.) by cyclic voltammetry (CV), square wave voltammetry (SWV) and chronoamperometry (CA) techniques in perchloric acid (HClO4) and phosphate buffer solution (PBS, pH 7.0). P1,5-DAN/GC M.E. was investigated for simultaneous determination of HQ, CC and RC in single, binary and ternary systems. Oxidation peak potentials were negatively shifted with increasing oxidation peak current for HQ, CC and RC at P1,5-DAN/GC M.E. compared with bare GC electrode. The obtained results illustrate that the former electrode exhibits better performance towards the three isomers in PBS rather than in HClO4 solution. The catalytic currents for different concentrations of HQ, CC and RC showed good relationship in the range of 0.1-100 µM for all analytes and low detection limits (LOD) of 0.034, 0.059 and 0.14 µM for them, respectively, in a ternary system in PBS at pH 7.0. This method has been practically applied for the detection of these isomers in tap water with acceptable results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...