Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276782

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants and COVID-19 vaccination have resulted in complex exposure histories. Rapid assessment of the effects of these exposures on neutralising antibodies against SARS-CoV-2 infection is crucial for informing vaccine strategy and epidemic management. We aimed to investigate heterogeneity in individual-level and population-level antibody kinetics to emerging variants by previous SARS-CoV-2 exposure history, to examine implications for real-time estimation, and to examine the effects of vaccine-campaign timing. METHODS: Our Bayesian hierarchical model of antibody kinetics estimated neutralising-antibody trajectories against a panel of SARS-CoV-2 variants quantified with a live virus microneutralisation assay and informed by individual-level COVID-19 vaccination and SARS-CoV-2 infection histories. Antibody titre trajectories were modelled with a piecewise linear function that depended on the key biological quantities of an initial titre value, time the peak titre is reached, set-point time, and corresponding rates of increase and decrease for gradients between two timing parameters. All process parameters were estimated at both the individual level and the population level. We analysed data from participants in the University College London Hospitals-Francis Crick Institute Legacy study cohort (NCT04750356) who underwent surveillance for SARS-CoV-2 either through asymptomatic mandatory occupational health screening once per week between April 1, 2020, and May 31, 2022, or symptom-based testing between April 1, 2020, and Feb 1, 2023. People included in the Legacy study were either Crick employees or health-care workers at three London hospitals, older than 18 years, and gave written informed consent. Legacy excluded people who were unable or unwilling to give informed consent and those not employed by a qualifying institution. We segmented data to include vaccination events occurring up to 150 days before the emergence of three variants of concern: delta, BA.2, and XBB 1.5. We split the data for each wave into two categories: real-time and retrospective. The real-time dataset contained neutralising-antibody titres collected up to the date of emergence in each wave; the retrospective dataset contained all samples until the next SARS-CoV-2 exposure of each individual, whether vaccination or infection. FINDINGS: We included data from 335 participants in the delta wave analysis, 223 (67%) of whom were female and 112 (33%) of whom were male (median age 40 years, IQR 22-58); data from 385 participants in the BA.2 wave analysis, 271 (70%) of whom were female and 114 (30%) of whom were male (41 years, 22-60); and data from 248 participants in the XBB 1.5 wave analysis, 191 (77%) of whom were female, 56 (23%) of whom were male, and one (<1%) of whom preferred not to say (40 years, 21-59). Overall, we included 968 exposures (vaccinations) across 1895 serum samples in the model. For the delta wave, we estimated peak titre values as 490·0 IC50 (95% credible interval 224·3-1515·9) for people with no previous infection and as 702·4 IC50 (300·8-2322·7) for people with a previous infection before omicron; the delta wave did not include people with a previous omicron infection. For the BA.2 wave, we estimated peak titre values as 858·1 IC50 (689·8-1363·2) for people with no previous infection, 1020·7 IC50 (725·9-1722·6) for people with a previous infection before omicron, and 1422·0 IC50 (679·2-3027·3) for people with a previous omicron infection. For the XBB 1.5 wave, we estimated peak titre values as 703·2 IC50 (415·0-3197·8) for people with no previous infection, 1215·9 IC50 (511·6-7338·7) for people with a previous infection before omicron, and 1556·3 IC50 (757·2-7907·9) for people with a previous omicron infection. INTERPRETATION: Our study shows the feasibility of real-time estimation of antibody kinetics before SARS-CoV-2 variant emergence. This estimation is valuable for understanding how specific combinations of SARS-CoV-2 exposures influence antibody kinetics and for examining how COVID-19 vaccination-campaign timing could affect population-level immunity to emerging variants. FUNDING: Wellcome Trust, National Institute for Health Research University College London Hospitals Biomedical Research Centre, UK Research and Innovation, UK Medical Research Council, Francis Crick Institute, and Genotype-to-Phenotype National Virology Consortium.

4.
Cancer Cell ; 39(11): 1497-1518.e11, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34715028

RESUMO

ADAPTeR is a prospective, phase II study of nivolumab (anti-PD-1) in 15 treatment-naive patients (115 multiregion tumor samples) with metastatic clear cell renal cell carcinoma (ccRCC) aiming to understand the mechanism underpinning therapeutic response. Genomic analyses show no correlation between tumor molecular features and response, whereas ccRCC-specific human endogenous retrovirus expression indirectly correlates with clinical response. T cell receptor (TCR) analysis reveals a significantly higher number of expanded TCR clones pre-treatment in responders suggesting pre-existing immunity. Maintenance of highly similar clusters of TCRs post-treatment predict response, suggesting ongoing antigen engagement and survival of families of T cells likely recognizing the same antigens. In responders, nivolumab-bound CD8+ T cells are expanded and express GZMK/B. Our data suggest nivolumab drives both maintenance and replacement of previously expanded T cell clones, but only maintenance correlates with response. We hypothesize that maintenance and boosting of a pre-existing response is a key element of anti-PD-1 mode of action.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Nivolumabe/administração & dosagem , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos , Carcinoma de Células Renais/genética , Ensaios Clínicos Fase II como Assunto , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Renais/genética , Nivolumabe/farmacologia , Estudos Prospectivos , Análise de Sequência de RNA , Análise de Célula Única , Evasão Tumoral , Microambiente Tumoral , Sequenciamento do Exoma
8.
Nat Med ; 25(10): 1549-1559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591606

RESUMO

Somatic mutations together with immunoediting drive extensive heterogeneity within non-small-cell lung cancer (NSCLC). Herein we examine heterogeneity of the T cell antigen receptor (TCR) repertoire. The number of TCR sequences selectively expanded in tumors varies within and between tumors and correlates with the number of nonsynonymous mutations. Expanded TCRs can be subdivided into TCRs found in all tumor regions (ubiquitous) and those present in a subset of regions (regional). The number of ubiquitous and regional TCRs correlates with the number of ubiquitous and regional nonsynonymous mutations, respectively. Expanded TCRs form part of clusters of TCRs of similar sequence, suggestive of a spatially constrained antigen-driven process. CD8+ tumor-infiltrating lymphocytes harboring ubiquitous TCRs display a dysfunctional tissue-resident phenotype. Ubiquitous TCRs are preferentially detected in the blood at the time of tumor resection as compared to routine follow-up. These findings highlight a noninvasive method to identify and track relevant tumor-reactive TCRs for use in adoptive T cell immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Heterogeneidade Genética , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Idoso , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Receptores de Antígenos de Linfócitos T/imunologia
9.
Melanoma Manag ; 2(4): 315-325, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30190860

RESUMO

Pembrolizumab is a humanized IgG4 anti-PD-1 antibody that plays a major role in the treatment of advanced melanoma. Through blockade of PD-1, it leads to an increase in effector T-cell activity in the tumor microenvironment. Clinical trial outcomes for pembrolizumab in addition to pharmacokinetics, pharmacodynamics and safety of the compound are discussed in this article. Phase I trials have demonstrated safety and efficacy of pembrolizumab in advanced, pretreated melanoma patients. When compared with chemotherapy in a Phase II trial of ipilimumab-refractory patients, those treated with pembrolizumab showed superior progression-free survival. In addition, in the pivotal Phase III trial pembrolizumab improved overall survival compared with ipilimumab in patients naive to immune checkpoint inhibition. Pembrolizumab is well tolerated and has a favorable safety profile. Common adverse events are fatigue, rash, itching and diarrhea. Less frequent immune-related adverse events include hypothyroidism, colitis, hepatitis and pneumonitis.

10.
JRSM Cardiovasc Dis ; 2: 2048004013486634, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24175081

RESUMO

Hypertension is a common disease associated with important cardiovascular complications. Persistent blood pressure of 140/90 or higher despite combined use of a reninangiotensin system blocker, calcium channel blocker and a diuretic at highest tolerated doses constitutes resistant hypertension. Excess sympathetic activity plays an important pathogenic role in resistant hypertension in addition to contributing to the development of metabolic problems, in particular diabetes. Reduction of renal sympathetic activity by percutaneous catheter-based radiofrequency ablation via the renal arteries has been shown in several studies to decrease blood pressure in patients with resistant hypertension, and importantly is largely free of significant complications. However, longer term follow-up is required to confirm both long-term safety and efficacy.

11.
Cancer Cell ; 20(4): 524-37, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22014577

RESUMO

The Krebs cycle enzyme fumarate hydratase (FH) is a human tumor suppressor whose inactivation is associated with the development of leiomyomata, renal cysts, and tumors. It has been proposed that activation of hypoxia inducible factor (HIF) by fumarate-mediated inhibition of HIF prolyl hydroxylases drives oncogenesis. Using a mouse model, we provide genetic evidence that Fh1-associated cyst formation is Hif independent, as is striking upregulation of antioxidant signaling pathways revealed by gene expression profiling. Mechanistic analysis revealed that fumarate modifies cysteine residues within the Kelch-like ECH-associated protein 1 (KEAP1), abrogating its ability to repress the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response pathway, suggesting a role for Nrf2 dysregulation in FH-associated cysts and tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fumarato Hidratase/fisiologia , Fumaratos/metabolismo , Doenças Renais Císticas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Animais , Antioxidantes/metabolismo , Hipóxia Celular , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Doenças Renais Císticas/genética , Camundongos , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Transdução de Sinais
12.
J Pathol ; 225(1): 4-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21630274

RESUMO

Germline mutations in the FH gene encoding the Krebs cycle enzyme fumarate hydratase predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. FH-deficient cells and tissues accumulate high levels of fumarate, which may act as an oncometabolite and contribute to tumourigenesis. A recently proposed role for fumarate in the covalent modification of cysteine residues to S-(2-succinyl) cysteine (2SC) (termed protein succination) prompted us to assess 2SC levels in our existing models of HLRCC. Herein, using a previously characterized antibody against 2SC, we show that genetic ablation of FH causes high levels of protein succination. We next hypothesized that immunohistochemistry for 2SC would serve as a metabolic biomarker for the in situ detection of FH-deficient tissues. Robust detection of 2SC was observed in Fh1 (murine FH)-deficient renal cysts and in a retrospective series of HLRCC tumours (n = 16) with established FH mutations. Importantly, 2SC was undetectable in normal tissues (n = 200) and tumour types not associated with HLRCC (n = 1342). In a prospective evaluation of cases referred for genetic testing for HLRCC, the presence of 2SC-modified proteins (2SCP) correctly predicted genetic alterations in FH in every case. In two series of unselected type II papillary renal cancer (PRCC), prospectively analysed by 2SCP staining followed by genetic analysis, the biomarker accurately identified previously unsuspected FH mutations (2/33 and 1/36). The investigation of whether metabolites in other tumour types produce protein modification signature(s) that can be assayed using similar strategies will be of interest in future studies of cancer.


Assuntos
Carcinoma de Células Renais/diagnóstico , Fumarato Hidratase/deficiência , Neoplasias Renais/diagnóstico , Leiomiomatose/diagnóstico , Síndromes Neoplásicas Hereditárias/diagnóstico , Adulto , Idoso , Animais , Biomarcadores Tumorais/deficiência , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Modelos Animais de Doenças , Feminino , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Neoplasias Renais/genética , Leiomiomatose/genética , Perda de Heterozigosidade , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/genética , Estudos Prospectivos , Sensibilidade e Especificidade , Ácido Succínico/metabolismo
13.
Cancer Res ; 70(22): 9153-65, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20978192

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by mutations in the Krebs cycle enzyme fumarate hydratase (FH). It has been proposed that "pseudohypoxic" stabilization of hypoxia-inducible factor-α (HIF-α) by fumarate accumulation contributes to tumorigenesis in HLRCC. We hypothesized that an additional direct consequence of FH deficiency is the establishment of a biosynthetic milieu. To investigate this hypothesis, we isolated primary mouse embryonic fibroblast (MEF) lines from Fh1-deficient mice. As predicted, these MEFs upregulated Hif-1α and HIF target genes directly as a result of FH deficiency. In addition, detailed metabolic assessment of these MEFs confirmed their dependence on glycolysis, and an elevated rate of lactate efflux, associated with the upregulation of glycolytic enzymes known to be associated with tumorigenesis. Correspondingly, Fh1-deficient benign murine renal cysts and an advanced human HLRCC-related renal cell carcinoma manifested a prominent and progressive increase in the expression of HIF-α target genes and in genes known to be relevant to tumorigenesis and metastasis. In accord with our hypothesis, in a variety of different FH-deficient tissues, including a novel murine model of Fh1-deficient smooth muscle, we show a striking and progressive upregulation of a tumorigenic metabolic profile, as manifested by increased PKM2 and LDHA protein. Based on the models assessed herein, we infer that that FH deficiency compels cells to adopt an early, reversible, and progressive protumorigenic metabolic milieu that is reminiscent of that driving the Warburg effect. Targets identified in these novel and diverse FH-deficient models represent excellent potential candidates for further mechanistic investigation and therapeutic metabolic manipulation in tumors.


Assuntos
Fumarato Hidratase/deficiência , Fumarato Hidratase/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Leiomiomatose/genética , Leiomiomatose/metabolismo , Leiomiomatose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/metabolismo , Músculo Liso/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cariotipagem Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA