Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715156

RESUMO

Detection and quantification of pathogen propagules in the air or other environmental samples is facilitated by culture-independent assays. We developed a quantitative PCR assay for the hop powdery mildew fungus, Podosphaera macularis, for detection of the organism from air samples. The assay utilizes primers and a TaqMan probe designed to target species-specific sequences in the 28S large subunit (LSU) of the nuclear ribosomal rDNA. Analytical sensitivity was not affected by the presence of an exogenous internal control or potential PCR inhibitors associated with DNA extracted from soil. The level of quantification of the assay was between 200 and 350 conidia when DNA was extracted from a fixed number of conidia. The assay amplified all isolates of P. macularis tested and had minimal cross-reactivity with other Podosphaera species when assayed with biologically relevant quantities of DNA. Standard curves generated independently in two other laboratories indicated that assay sensitivity was qualitatively similar and reproducible. All laboratories successfully detected eight unknown isolates of P. macularis and correctly discriminated Pseudoperonospora humuli and a water control. The usefulness of the assay for air sampling for late-season inoculum of P. macularis was demonstrated in field studies in 2019 and 2020. In both years, airborne populations of P. macularis in hop yards were detected consistently and increased during bloom and cone development.

2.
Plant Dis ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172977

RESUMO

In July of 2020, a hop (Humulus lupulus L.) grower in Berrien County, Michigan submitted 'Chinook' leaf samples to MSU Plant & Pest Diagnostics. The leaves were covered in small, tan colored lesions, with a small chlorotic halo with an approximate diameter of 5 mm. The grower reported that foliar lesions were in the lower 2 m of the fully developed hop canopy. Disease incidence and severity were estimated at approximately 20% and 5 to 10%, respectively. After incubation at 100% relative humidity, acervuli with orange spore masses and a few setae were present. A pure culture was obtained from these sporulating lesions using water agar. The isolate was hyphal tipped onto potato dextrose agar (PDA) and stored in a glycerol-salt solution at -80o C (isolate CL001) (Miles et al. 2011). On PDA, cultures displayed gray growth on the top of the colony and a red color on the underside of the Petri dish. After 14 days, acervuli with no setae appeared exuding orange conidial masses on the surface of the culture. Conidia were hyaline, aseptate, smooth-walled and rounded at the ends and measured on average 15.89 µm (13.81 to 16.91 µm) × 7.26 (6.82 to 8.41 µm) (n = 20). The color and size of the conidia matched other descriptions of C. acutatum sensu lato (Damm et al. 2012). Four loci (ITS/515 bp - OQ026167, GAPDH/238 bp - OQ230832, CHS1/228 bp -OQ230830, and TUB2/491 bp - OQ230831) were amplified from isolate CL001 (using the primers ITS1/ITS4, GDF1/GDR1, CSH-79f/CHS-354R, and T1/Bt-2b, respectively) and had 100% pairwise identity with C. fioriniae 125396 (JQ948299, JQ948629, JQ948960, JQ949950, respectively, Damm et al. 2012). The GAPDH, CSH1, and TUB2 sequences from isolate CL001 were trimmed, concatenated and aligned with 31 different members of Colletotrichum acutatum sensu lato and C. gloesporioides 356878 (Damm et al. 2012; Kennedy et al. 2022). The alignment was then used to produce a maximum likehood phylogenetic tree using Geneious Prime (Biomatters Ltd.) with the PHYML add on using the HKY + G model (G = 0.34) (Guindon et al. 2010). Isolate CL001 had the closest similarity to C. fioriniae with a bootstrap value of 100. Pathogenicity tests were performed on 2 month-old 'Chinook' hop plants. Twelve plants were inoculated with 50 ml of a conidial suspension (7.95 x 106 conidia/ml) of isolate CL001 (n = 6) or water (n = 6) using a spray bottle until runoff. Inoculated plants were sealed in clear plastic bags and grown in a greenhouse at 21o C with a photoperiod of 14 h. After 7 days, lesions appeared on the hop plants inoculated with CL001, but no symptoms appeared on the water inoculated hop plants. Lesions with a chlorotic halo were observed but they were smaller than field lesions and no setae were present (approx. 1 mm in diam.). Leaves were surface sterilized (0.3% sodium hypochlorite solution for 15 s and then rinsed three times) and the leading margin of the lesions or healthy tissue (water control) were placed on 1% ampicillin amended PDA. Fungal isolates on PDA morphologically matched C. fioriniae were recovered from all CL001-inoculated plants. No C. fioriniae isolates were recovered from the water-inoculated plants. Based on conidial morphology, the four loci, and the phylogenetic tree, isolate CL001 was identified as C. fioriniae. This is the first report of Colletotrichum fioriniae (syn = Glomerella acutata var. fioriniae Marcelino & Gouli) infecting common hop and further investigation is needed to determine if management is needed for this pathogen.

3.
Plant Dis ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081627

RESUMO

The U.S. is the world's leading producer of highbush blueberries (Vaccinium corymbosum L.), and Michigan is ranked in the top five production states (USDA NASS, 2022). In June and July of 2021, 268 blueberry stem blight samples were collected for a pathogen survey across 22 total fields in Van Buren and Ottawa counties in Michigan. Current season stems with symptoms of necrosis and wilting were collected. Stems were cut just below the necrotic area and cross-sections (2-3 mm long) were surface disinfested in 10% bleach for 1 min, rinsed twice in sterile distilled water, and dried on sterile paper towels. Stem cross-sections were plated onto potato dextrose agar (PDA) amended with 100 µg/ml streptomycin sulfate and 50 µg/ml ampicillin. Plates were incubated at 21°C under a 12-h photoperiod for 5-6 days. Outgrowing fungi with morphology similar to Diaporthe spp. were transferred to new PDA plates 2 consecutive times after 7 days of similar incubation to ensure single colony isolation. After 7 days, colonies consisted of white and light brown mycelia that were mostly flat, with some isolates that had partially raised mycelia towards the center of the plate. After 3-4 weeks, colonies turned brown and gray and produced dark brown pycnidia. Aseptate, hyaline, fusiform to ellipsoid, biguttulate alpha conidia measuring 5.4 to 7.6 x 2.6 to 3.7 µm (n = 60) were produced. No beta conidia were observed. In total, 3 isolates, representing 3 different farms (37-95 km apart) and cultivars ('Duke', 'Jersey', and 'Bluecrop'), as well as 2 counties, were identified as Diaporthe through colony morphology (Gomes et al. 2013, Udayanga et al. 2014). Amplification and subsequent Sanger sequencing were performed for the internal transcribed spacer (ITS) region and portions of the translation elongation factor (TEF) 1-α, ß-tubulin (TUB), and histone H3 (HIS) genes using primers ITS5/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), T1/Bt-2b (Glass and Donaldson 1995), and CYLH3F/H3-1b (Glass and Donaldson 1995), respectively. Representative sequences were deposited in NCBI GenBank (accession no. OQ507870-OQ507872 for ITS, and OQ550272-OQ550278 for TEF, HIS, and TUB). BLASTn results revealed 97-100% identity for all 4 genes across other established D. eres isolates reported in Gomes et al. (2013). For example, JMK047 had 99.8% (577/578 bp), 99.7% (327/328 bp), 100% (701/701 bp), and 100% (439/439 bp) homology with ITS, TEF, TUB, and HIS sequences, respectively, of D. eres CBS 439.82 (accession no. KC343090, KC343816, KC344058, KC343574). Koch's Postulates were fulfilled via pathogenicity tests on 2-year-old potted 'Blueray' plants with 2 isolates. Stems were surface sterilized with 1% bleach then 8-mm long pieces of bark were removed using a sterile razor blade to expose the cambium. Plugs of sterile PDA (negative control) or mycelia from 7-day old cultures on PDA (5-mm diameter) were placed onto the cambium layer and sealed with Parafilm. Six stems on unique plants were inoculated per treatment. Plants were grown in a 20.5°C greenhouse with a 14-hr photoperiod. After 3 weeks, the stems inoculated with D. eres isolates showed similar stem blight symptoms to those observed in the field while control stems remained healthy. Re-isolation and sequencing of the ITS region of 3 replicates per treatment with the protocol described above confirmed symptoms correlated with D. eres isolates. This is the first report of D. eres associated with stem blight of highbush blueberry in Michigan, and the second report in the U.S. (Lombard et al. 2014). Increasing prevalence of D. eres in U.S. blueberries may affect disease management programs. References Carbone, I., and Kohn, L. M. 1999. Mycologia 91:553. 10.1080/00275514.1999.12061051. Glass, N. L., and Donaldson, G. C. 1995. Appl. Environ. Microbiol. 61:1323. 10.1128/aem.61.4.1323-1330.1995. Gomes, R. R., et al. 2013. Persoonia 31:1. 10.3767/003158513x666844. Lombard, L., et al. 2014. Phytopathol. Mediterr. 51(2):287. 10.14601/Phytopathol_Mediterr-14034. Udayanga, D., Castlebury, L. A., Rossman, A. Y., Chukeatirote, E., and Hyde, K. D. 2014. Fungal Divers. 67:203-229. 10.1007/s13225-014-0297-2. USDA NASS. 2022. Noncitrus Fruits and Nuts 2021 Summary. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, California, USA.

4.
Plant Dis ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36948225

RESUMO

Halo blight, caused by Diaporthe humulicola, is an emerging issue in hop production in the Upper Midwestern and Eastern North America. Reports of halo blight thus far have included Connecticut, Michigan, New York, and Quebec (Allan-Perkins et al.; Hatlen et al. 2022; Higgins et al. 2021; Sharma et al. 2022). In August 2020, brownish-gray necrotic foliar lesions and damaged cones were observed in an experimental hopyard consisting of a breeding population of hop plants grown at the University of Minnesota - Southern Research and Outreach Center in Waseca, MN. The foliar lesions consisted of necrotic concentric circles with some possessing chlorotic halos. Damage to the cones often appeared as reddish brown as bands around cone midsections, scattered on bracts and bracteoles, and in severe cases near entire cones. Disease incidence within the experimental hopyard was observed on >50% of hop plants. No pycnidia were observed on leaves or cones following collection of samples. A total of eleven samples were obtained from diseased leaves or cones. Symptomatic plant tissue was surface-sterilized and sections excised from the leading edge of lesions were plated onto potato dextrose agar (PDA). Fungal growth was hyphal tipped and incubated at 22° C under a 12-h photoperiod for a period of 21 days (Hatlen et al 2022). Culture characteristics on PDA included raised white to light gray mycelium with irregular pycnidia distribution over the surface. DNA was extracted from mycelia using the MagMAX Plant DNA Isolation Kit (Applied Biosystems, Foster City, CA). A representative isolate (M4N) was selected for DNA amplification and bi-directional Sanger sequencing using the following primers ITS1/ITS4 (ITS) for the internal transcribed spacer, CYLH3F/H3-1b for histone 3 (HIS), and Ef1728f/EF1-986R for translation elongation factor 1-α (TEF) (Carbone and Kohn 1999; Glass and Donaldson 1995; White et al. 1990). Following amplification and sequencing, reads were trimmed and assembled using Geneious Prime (Biomatters, New Zealand). BLASTn analysis revealed that the ITS (GenBank Accession OQ144379), HIS (GenBank Accession OQ256246), and TEF (GenBank Accession OQ256245) were 99 - 100% identical to D. humulicola sequences (MN152927, MN180213, MN180207) infecting hop in other US regions (Allan-Perkins et al. 2019; Hatlen et al. 2022). To complete Koch's postulates, two sets each of six 3-month old plants of the hop cv. 'Chinook' were inoculated with either 50 mL of conidial suspension (6 x 105 conidia/mL) derived from pycnidia harvested from 28-day old cultures or with water as a negative control. Following inoculation, plants were then grown in a greenhouse at 100% relative humidity at 22°C with a 14-h photoperiod. Light brown lesions with concentric circles appeared on the adaxial side of the leaf after 3 weeks but were not observed on mock-inoculated plants. We subsequently re-isolated D. humulicola from 100% of infected leaves which was identified based upon colony and conidial morphology using descriptions from Higgins et al. (2021). alpha-conidia (n = 20) averaged 10.96 µm ± 1.12 in length and 5.11 µm ± 0.67 in width, were unicellular and hyaline. No beta-conidia were observed, consistent with previous reports of this pathogen. No disease symptoms appeared on mock-inoculated plants, and D. humulicola was not recovered from mock-inoculated plants. There is significant concern regarding the increasing prevalence of D. humulicola as an emerging pathogen affecting hop production across the Midwestern and Great Lakes region of North America. Future research is needed to determine differences in hop varietal susceptibility and fungicide efficacy for management of this disease.

5.
Plant Dis ; 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798784

RESUMO

Halo blight of hop caused by Diaporthe humulicola has recently been reported in Michigan and Connecticut (Higgins et al. 2021, Allan-Perkins et al 2020). In August 2020 growers in Quebec, Canada reported necrotic foliar lesions and desiccation of the hop strobile (cone) on Chinook and Nugget cultivars. The foliar lesions were dry concentric circles with a chlorotic halo surrounding the lesions; no pycnidia were observed on leaves or cones. Up to 100% of the infected bract tissue was dry and easily shattered, the grower estimated that more than 90% of the plants in the hopyard exhibited symptoms. Twenty-six isolates were obtained from surface-sterilized leaf and cone tissue by plating the leading edge of lesions on potato dextrose agar. Fungal isolates were hyphal tipped and were incubated at 22°C with a 12 h photoperiod. After 21-days, all cultures were white to beige with pycnidia. DNA was extracted from cultures using the MagMAX Plant DNA Isolation Kit (Applied Biosystems, Foster City, CA). DNA amplification of a representative isolate (CD6C) was performed with primers ITS1/ITS4 (White et al. 1990) for the internal transcribed spacer (ITS), CYLH3F/H3-1b (Glass and Donaldson 1995) for histone 3 (HIS), and Ef1728f/EF1-986R (Carbone and Kohn 1999) for translation elongation factor 1-α (TEF). Amplification primers were used for bidirectional Sanger sequencing, reads were assembled using Geneious Prime (Biomatters, New Zealand), and identified using NCBI BLAST. BLAST results showed that the sequences for TEF, ITS, and HIS all had 100% pairwise identity to Diaporthe sp. 1-MI (MT909101, MT909099, MT909093, OK001342, MZ934713, OK001341). Futhermore, BLAST results showed that ITS and HIS have 100% pairwise identity D. humulicola (MN152929, MN180214). The TEF sequence also had 99.7% pairwise identity to D. humulicola (MN180209). Koch's postulates were conducted by inoculating six 3-mo-old 'Chinook' plants with conidia harvested from 28-day-old cultures and spraying 50 ml of inoculum (6 x 105 conidia/ml) or water to each plant. Plants were then stored in a greenhouse at 100% relative humidity at 22°C with a 14-h photo period. Lesions appeared on the adaxial side of the leaf after 21 days. D. humulicola was re-isolated from all infected leaf tissue, but not from any water inoculated plants and identified by conidial morphology using descriptions from Higgins et al. (2021). So far, Diaporthe sp. 1-MI appears to be synonymous with Diaporthe humulicola, but currently two names are being utilized (i.e. Diaporthe leaf spot and halo blight). In Higgins et al., (2021) it was proposed that the name halo blight might be more appropriate because disease symptoms are not confined to the leaves and cause significant blighting of cones. Halo blight caused by D. humulicola appears widespread in Michigan and Canada and may become an issue in other eastern North American growing regions with humid conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...