Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39200086

RESUMO

The rapid rise in increasingly resistant bacteria has become a major threat to public health. Antimicrobial susceptibility testing (AST) is crucial in guiding appropriate therapeutic decisions and infection prevention practices for patient care. However, conventional culture-based AST methods are time-consuming and labor-intensive. Therefore, rapid AST approaches exist to address the delayed gap in time to actionable results. There are two main types of rapid AST technologies- phenotypic and genotypic approaches. In this review, we provide a summary of all commercially available rapid AST platforms for use in clinical microbiology laboratories. We describe the technologies utilized, performance characteristics, acceptable specimen types, types of resistance detected, turnaround times, limitations, and clinical outcomes driven by these rapid tests. We also discuss crucial factors to consider for the implementation of rapid AST technologies in a clinical laboratory and what the future of rapid AST holds.

2.
Infect Immun ; 90(4): e0062621, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35289633

RESUMO

Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.


Assuntos
Coinfecção , Fluconazol , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida albicans , Coinfecção/tratamento farmacológico , Farmacorresistência Fúngica , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Ferro , Testes de Sensibilidade Microbiana , Pseudomonas , Pseudomonas aeruginosa , Peixe-Zebra
3.
J Appl Toxicol ; 39(12): 1672-1690, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429102

RESUMO

Humans are exposed to the antimicrobial agent triclosan (TCS) through use of TCS-containing products. Exposed tissues contain mast cells, which are involved in numerous biological functions and diseases by secreting various chemical mediators through a process termed degranulation. We previously demonstrated that TCS inhibits both Ca2+ influx into antigen-stimulated mast cells and subsequent degranulation. To determine the mechanism linking the TCS cytosolic Ca2+ depression to inhibited degranulation, we investigated the effects of TCS on crucial signaling enzymes activated downstream of the Ca2+ rise: protein kinase C (PKC; activated by Ca2+ and reactive oxygen species [ROS]) and phospholipase D (PLD). We found that TCS strongly inhibits PLD activity within 15 minutes post-antigen, a key mechanism of TCS mast cell inhibition. In addition, experiments using fluorescent constructs and confocal microscopy indicate that TCS delays antigen-induced translocations of PKCßII, PKCδ and PKC substrate myristoylated alanine-rich C-kinase. Surprisingly, TCS does not inhibit PKC activity or overall ability to translocate, and TCS actually increases PKC activity by 45 minutes post-antigen; these results are explained by the timing of both TCS inhibition of cytosolic Ca2+ (~15+ minutes post-antigen) and TCS stimulation of ROS (~45 minutes post-antigen). These findings demonstrate that it is incorrect to assume that all Ca2+ -dependent processes will be synchronously inhibited when cytosolic Ca2+ is inhibited by a toxicant or drug. The results offer molecular predictions of the effects of TCS on other mammalian cell types, which share these crucial signal transduction elements and provide biochemical information that may underlie recent epidemiological findings implicating TCS in human health problems.


Assuntos
Anti-Infecciosos/toxicidade , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Fosfolipase D/antagonistas & inibidores , Triclosan/toxicidade , Linhagem Celular , Humanos , Mastócitos/metabolismo , Mastócitos/patologia , Mastócitos/fisiologia , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA