Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Sci Rep ; 14(1): 7983, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575668

RESUMO

Dimension reduction has been used to visualise the distribution of multidimensional microbiome data, but the composite variables calculated by the dimension reduction methods have not been widely used to investigate the relationship of the human gut microbiome with lifestyle and disease. In the present study, we applied several dimension reduction methods, including principal component analysis, principal coordinate analysis (PCoA), non-metric multidimensional scaling (NMDS), and non-negative matrix factorization, to a microbiome dataset from 186 subjects with symptoms of  allergic rhinitis (AR) and 106 controls. All the dimension reduction methods supported that the distribution of microbial data points appeared to be continuous rather than discrete. Comparison of the composite variables calculated from the different dimension reduction methods showed that the characteristics of the composite variables differed depending on the distance matrices and the dimension reduction methods. The first composite variables calculated from PCoA and NMDS with the UniFrac distance were strongly associated with AR (FDR adjusted P = 2.4 × 10-4 for PCoA and P = 2.8 × 10-4 for NMDS), and also with the relative abundance of Bifidobacterium and Prevotella. The abundance of Bifidobacterium was also linked to intake of several nutrients, including carbohydrate, saturated fat, and alcohol via composite variables. Notably, the association between the composite variables and AR was much stronger than the association between the relative abundance of individual genera and AR. Our results highlight the usefulness of the dimension reduction methods for investigating the association of microbial composition with lifestyle and disease in clinical research.


Assuntos
Microbioma Gastrointestinal , Rinite Alérgica , Humanos , Bifidobacterium , Prevotella , Análise de Escalonamento Multidimensional
2.
BMC Microbiol ; 24(1): 84, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468206

RESUMO

BACKGROUND: Although the pathology of multiple chemical sensitivity (MCS) is unknown, the central nervous system is reportedly involved. The gut microbiota is important in modifying central nervous system diseases. However, the relationship between the gut microbiota and MCS remains unclear. This study aimed to identify gut microbiota variations associated with MCS using shotgun metagenomic sequencing of fecal samples. METHODS: We prospectively recruited 30 consecutive Japanese female patients with MCS and analyzed their gut microbiomes using shotgun metagenomic sequencing. The data were compared with metagenomic data obtained from 24 age- and sex-matched Japanese healthy controls (HC). RESULTS: We observed no significant difference in alpha and beta diversity of the gut microbiota between the MCS patients and HC. Focusing on the important changes in the literatures, at the genus level, Streptococcus, Veillonella, and Akkermansia were significantly more abundant in MCS patients than in HC (p < 0.01, p < 0.01, p = 0.01, respectively, fold change = 4.03, 1.53, 2.86, respectively). At the species level, Akkermansia muciniphila was significantly more abundant (p = 0.02, fold change = 3.3) and Faecalibacterium prausnitzii significantly less abundant in MCS patients than in HC (p = 0.03, fold change = 0.53). Functional analysis revealed that xylene and dioxin degradation pathways were significantly enriched (p < 0.01, p = 0.01, respectively, fold change = 1.54, 1.46, respectively), whereas pathways involved in amino acid metabolism and synthesis were significantly depleted in MCS (p < 0.01, fold change = 0.96). Pathways related to antimicrobial resistance, including the two-component system and cationic antimicrobial peptide resistance, were also significantly enriched in MCS (p < 0.01, p < 0.01, respectively, fold change = 1.1, 1.2, respectively). CONCLUSIONS: The gut microbiota of patients with MCS shows dysbiosis and alterations in bacterial functions related to exogenous chemicals and amino acid metabolism and synthesis. These findings may contribute to the further development of treatment for MCS. TRIAL REGISTRATION: This study was registered with the University Hospital Medical Information Clinical Trials Registry as UMIN000031031. The date of first trial registration: 28/01/2018.


Assuntos
Microbioma Gastrointestinal , Sensibilidade Química Múltipla , Humanos , Feminino , Japão , Fezes/microbiologia , Aminoácidos
3.
Allergol Int ; 73(1): 126-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182280

RESUMO

BACKGROUND: Oral immunotherapy (OIT) can ameliorate cow's milk allergy (CMA); however, the achievement of sustained unresponsiveness (SU) is challenging. Regarding the pathogenesis of CMA, recent studies have shown the importance of gut microbiota (Mb) and fecal water-soluble metabolites (WSMs), which prompted us to determine the change in clinical and gut environmental factors important for acquiring SU after OIT for CMA. METHODS: We conducted an ancillary cohort study of a multicenter randomized, parallel-group, delayed-start design study on 32 school-age children with IgE-mediated CMA who underwent OIT for 13 months. We defined SU as the ability to consume cow's milk exceeding the target dose in a double-blind placebo-controlled food challenge after OIT followed by a 2-week-avoidance. We longitudinally collected 175 fecal specimens and clustered the microbiome and metabolome data into 29 Mb- and 12 WSM-modules. RESULTS: During OIT, immunological factors improved in all participants. However, of the 32 participants, 4 withdrew because of adverse events, and only 7 were judged SU. Gut environmental factors shifted during OIT, but only in the beginning, and returned to the baseline at the end. Of these factors, milk- and casein-specific IgE and the Bifidobacterium-dominant module were associated with SU (milk- and casein-specific IgE; OR for 10 kUA/L increments, 0.67 and 0.66; 95%CI, 0.41-0.93 and 0.42-0.90; Bifidobacterium-dominant module; OR for 0.01 increments, 1.40; 95%CI, 1.10-2.03), and these associations were observed until the end of OIT. CONCLUSIONS: In this study, we identified the clinical and gut environmental factors associated with SU acquisition in CM-OIT.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade a Leite , Criança , Animais , Bovinos , Feminino , Humanos , Lactente , Hipersensibilidade a Leite/terapia , Caseínas , Estudos de Coortes , Imunoglobulina E , Imunoterapia , Leite
4.
Sci Rep ; 13(1): 19666, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952000

RESUMO

Recovering a sufficient amount of microbial DNA from extremely low-biomass specimens, such as human skin, to investigate the community structure of the microbiome remains challenging. We developed a sampling solution containing agar to increase the abundance of recovered microbial DNA. Quantitative PCR targeting the 16S rRNA gene revealed a significant increase in the amount of microbial DNA recovered from the developed sampling solution compared with conventional solutions from extremely low-biomass skin sites such as the volar forearm and antecubital fossa. In addition, we confirmed that the developed sampling solution reduces the contamination rate of probable non-skin microbes compared to the conventional solutions, indicating that the enhanced recovery of microbial DNA was accompanied by a reduced relative abundance of contaminating microbes in the 16S rRNA gene amplicon sequencing data. In addition, agar was added to each step of the DNA extraction process, which improved the DNA extraction efficiency as a co-precipitant. Enzymatic lysis with agar yielded more microbial DNA than conventional kits, indicating that this method is effective for analyzing microbiomes of low-biomass specimens.


Assuntos
DNA , Humanos , DNA Bacteriano/genética , DNA Bacteriano/análise , Ágar , Análise de Sequência de DNA/métodos , RNA Ribossômico 16S/genética , Biomassa , DNA/genética
5.
Res Sq ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961431

RESUMO

Persistent colonization and outgrowth of pathogenic organisms in the intestine may occur due to long-term antibiotic usage or inflammatory conditions, which perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, though an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. In this study, we rationally isolated and down-selected commensal bacterial consortia from healthy human stool samples capable of strongly and specifically suppressing intestinal Enterobacteriaceae. One of the elaborated consortia, consisting of 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby reestablishing colonization resistance and alleviating antibiotic-resistant Klebsiella-driven intestinal inflammation in mice. Harnessing these microbial activities in the form of live bacterial therapeutics may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant bacterial infection.

7.
Front Microbiol ; 14: 1232866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808292

RESUMO

Microbially influenced corrosion (MIC) may contribute significantly to corrosion-related failures in injection wells and iron pipes of iodine production facilities. In this study, the iron (Fe0) corroding activity of strain Q-1 isolated from iodide-rich brine in Japan and two Iodidimonas strains phylogenetically related to strain Q-1 were investigated under various culture conditions. Under aerobic conditions, the Fe0 foil in the culture of strain Q-1 was oxidized in the presence of nitrate and yeast extract, while those of two Iodidimonas strains were not. The amount of oxidized iron in this culture was six times higher than in the aseptic control. Oxidation of Fe0 in aerobic cultures of nitrate-reducing bacterium Q-1 was dependent on the formation of nitrite from nitrate. This Fe0 corrosion by nitrate-reducing bacterium Q-1 started after initial nitrite accumulation by day 4. Nitrate reduction in strain Q-1 is a unique feature that distinguishes it from two known species of Iodidimonas. Nitrite accumulation was supported by the encoding of genes for nitrate reductase and the missing of genes for nitrite reduction to ammonia or nitrogen gas in its genome sequence. Phylogenetic position of strain Q-1 based on the 16S rRNA gene sequence was with less than 96.1% sequence similarity to two known Iodidimonas species, and digital DNA-DNA hybridization (dDDH) values of 17.2-19.3%, and average nucleotide identity (ANI) values of 73.4-73.7% distinguished strain Q-1 from two known species. In addition of nitrate reduction, the ability to hydrolyze aesculin and gelatin hydrolysis and cellular fatty acid profiles also distinguished strain Q-1 from two known species. Consequently, a new species, named Iodidimonas nitroreducens sp. nov., is proposed for the nitrate-reducing bacterium strain Q-1T.

8.
Microbiol Spectr ; 11(6): e0512322, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819098

RESUMO

IMPORTANCE: Fusobacterium nucleatum is one of the predominant oral bacteria in humans. However, this bacterium is enriched in colorectal cancer (CRC) tissues and may be involved in CRC development. Our previous research suggested that F. nucleatum is present in CRC tissues originating from the oral cavity using a traditional strain-typing method [arbitrarily primed polymerase chain reaction (AP-PCR)]. First, using whole-genome sequencing, this study confirmed an exemplary similarity between the oral and tumoral strains derived from each patient with CRC. Second, we successfully developed a method to genotype this bacterium at the strain level, targeting the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated system, which is hypervariable (defined as F. nucleatum-strain genotyping PCR). This method can identify F. nucleatum strains in cryopreserved samples and is significantly superior to traditional AP-PCR, which can only be performed on isolates. The new methods have great potential for application in etiological studies of F. nucleatum in CRC.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Fusobacterium nucleatum/genética , Sistemas CRISPR-Cas , Boca/microbiologia , Reação em Cadeia da Polimerase/métodos , Neoplasias Colorretais/diagnóstico
9.
Nature ; 621(7978): 389-395, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648852

RESUMO

Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes1,2. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance3-9. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host's overall energy extraction10, thereby playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host-microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.


Assuntos
Metabolismo dos Carboidratos , Microbioma Gastrointestinal , Resistência à Insulina , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina/fisiologia , Monossacarídeos/metabolismo , Insulina/metabolismo , Síndrome Metabólica/metabolismo , Fezes/química , Fezes/microbiologia , Metabolômica
10.
Gut Microbes ; 15(1): 2206507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131293

RESUMO

Evidence has accumulated that gut microbiota and its metabolites, in particular the short-chain fatty acid propionate, are significant contributors to the pathogenesis of a variety of diseases. However, little is known regarding its impact on pediatric bronchial asthma, one of the most common allergic diseases in childhood. This study aimed to elucidate whether, and if so how, intestinal propionate during lactation is involved in the development of bronchial asthma. We found that propionate intake through breast milk during the lactation period resulted in a significant reduction of airway inflammation in the offspring in a murine house dust mite-induced asthma model. Moreover, GPR41 was the propionate receptor involved in suppressing this asthmatic phenotype, likely through the upregulation of Toll-like receptors. In translational studies in a human birth cohort, we found that fecal propionate was decreased one month after birth in the group that later developed bronchial asthma. These findings indicate an important role for propionate in regulating immune function to prevent the pathogenesis of bronchial asthma in childhood.


Assuntos
Asma , Microbioma Gastrointestinal , Feminino , Humanos , Lactente , Criança , Animais , Camundongos , Propionatos , Asma/prevenção & controle , Ácidos Graxos Voláteis/metabolismo , Intestinos , Suscetibilidade a Doenças
11.
ISME Commun ; 3(1): 28, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002405

RESUMO

Compost is used worldwide as a soil conditioner for crops, but its functions have still been explored. Here, the omics profiles of carrots were investigated, as a root vegetable plant model, in a field amended with compost fermented with thermophilic Bacillaceae for growth and quality indices. Exposure to compost significantly increased the productivity, antioxidant activity, color, and taste of the carrot root and altered the soil bacterial composition with the levels of characteristic metabolites of the leaf, root, and soil. Based on the data, structural equation modeling (SEM) estimated that amino acids, antioxidant activity, flavonoids and/or carotenoids in plants were optimally linked by exposure to compost. The SEM of the soil estimated that the genus Paenibacillus and nitrogen compounds were optimally involved during exposure. These estimates did not show a contradiction between the whole genomic analysis of compost-derived Paenibacillus isolates and the bioactivity data, inferring the presence of a complex cascade of plant growth-promoting effects and modulation of the nitrogen cycle by the compost itself. These observations have provided information on the qualitative indicators of compost in complex soil-plant interactions and offer a new perspective for chemically independent sustainable agriculture through the efficient use of natural nitrogen.

12.
Sci Rep ; 12(1): 21773, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526888

RESUMO

The number of patients on hemodialysis is increasing globally; diabetes mellitus (DM) complications is the major cause of hemodialysis in patients with chronic kidney disease (CKD). The D-amino acid (AA) profile is altered in patients with CKD; however, it has not been studied in patients with CKD and DM. Furthermore, bacteria responsible for altering the D-AA profile are not well understood. Therefore, we examined the D-AA profiles and associated bacteria in patients with CKD, with and without DM. We enrolled 12 healthy controls and 54 patients with CKD, with and without DM, and determined their salivary, stool, plasma, and urine chiral AA levels using two-dimensional high-performance liquid chromatography. We performed 16S rRNA gene sequencing analysis of the oral and gut microbiota to determine the association between the abundance of bacterial species and D-AA levels. Plasma D-alanine and D-serine levels were higher in patients with CKD than in healthy adults (p < 0.01), and plasma D-alanine levels were higher in patients with CKD and DM than in those without DM. The abundance of salivary Streptococcus, which produced D-alanine, increased in patients with CKD and DM and was positively correlated with plasma D-alanine levels. Patients with CKD and DM had unique oral microbiota and D-alanine profiles. Plasma D-alanine is a potential biomarker for patients with CKD and DM.


Assuntos
Diabetes Mellitus , Insuficiência Renal Crônica , Adulto , Humanos , RNA Ribossômico 16S/genética , Alanina , Insuficiência Renal Crônica/complicações , Bactérias/genética , Streptococcus/genética
13.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233028

RESUMO

Changes in the gut ecosystem, including the microbiome and the metabolome, and the host immune system after fructo-oligosaccharide (FOS) supplementation were evaluated. The supplementation of FOS showed large inter-individual variability in the absolute numbers of fecal bacteria and an increase in Bifidobacterium. The fecal metabolome analysis revealed individual variability in fructose utilization in response to FOS supplementation. In addition, immunoglobulin A(IgA) tended to increase upon FOS intake, and peripheral blood monocytes significantly decreased upon FOS intake and kept decreasing in the post-FOS phase. Further analysis using a metagenomic approach showed that the differences could be at least in part due to the differences in gene expressions of enzymes that are involved in the fructose metabolism pathway. While the study showed individual differences in the expected health benefits of FOS supplementation, the accumulation of "personalized" knowledge of the gut ecosystem with its genetic expression may enable effective instructions on prebiotic consumption to optimize health benefits for individuals in the future.


Assuntos
Microbiota , Oligossacarídeos , Frutose/farmacologia , Humanos , Imunoglobulina A/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Prebióticos
14.
Nature ; 609(7927): 582-589, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071157

RESUMO

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Assuntos
Microbioma Gastrointestinal , Intestino Grosso , Simbiose , Tripsina , Administração Oral , Animais , Sistemas de Secreção Bacterianos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , COVID-19/complicações , Citrobacter rodentium/imunologia , Diarreia/complicações , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Imunoglobulina A/metabolismo , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Camundongos , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Proteólise , SARS-CoV-2/patogenicidade , Tripsina/metabolismo , Internalização do Vírus
15.
Nat Commun ; 13(1): 5252, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068216

RESUMO

Indigenous bacteriophage communities (virome) in the human gut have a huge impact on the structure and function of gut bacterial communities (bacteriome), but virome variation at a population scale is not fully investigated yet. Here, we analyse the gut dsDNA virome in the Japanese 4D cohort of 4198 deeply phenotyped individuals. By assembling metagenomic reads, we discover thousands of high-quality phage genomes including previously uncharacterised phage clades with different bacterial hosts than known major ones. The distribution of host bacteria is a strong determinant for the distribution of phages in the gut, and virome diversity is highly correlated with anti-viral defence mechanisms of the bacteriome, such as CRISPR-Cas and restriction-modification systems. We identify 97 various intrinsic/extrinsic factors that significantly affect the virome structure, including age, sex, lifestyle, and diet, most of which showed consistent associations with both phages and their predicted bacterial hosts. Among the metadata categories, disease and medication have the strongest effects on the virome structure. Overall, these results present a basis to understand the symbiotic communities of bacteria and their viruses in the human gut, which will facilitate the medical and industrial applications of indigenous viruses.


Assuntos
Bacteriófagos , Viroma , Bactérias , Bacteriófagos/genética , Humanos , Metagenoma , Metagenômica , Viroma/genética
16.
Microbiol Resour Announc ; 11(10): e0077522, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36135361

RESUMO

Lentilactobacillus kosonis NBRC 111893 is a species of heterolactic acid bacteria isolated from kôso, a Japanese sugar-vegetable fermented beverage. The draft genome sequence of L. kosonis NBRC 111893 is useful for understanding the features of the genus Lentilactobacillus and its possible uses in fermented foods.

17.
Gastroenterology ; 163(4): 1038-1052, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788347

RESUMO

BACKGROUND & AIMS: Medication is a major determinant of human gut microbiome structure, and its overuse increases the risks of morbidity and mortality. However, effects of certain commonly prescribed drugs and multiple medications on the gut microbiome are still underinvestigated. METHODS: We performed shotgun metagenomic analysis of fecal samples from 4198 individuals in the Japanese 4D (Disease, Drug, Diet, Daily life) microbiome project. A total of 759 drugs were profiled, and other metadata, such as anthropometrics, lifestyles, diets, physical activities, and diseases, were prospectively collected. Second fecal samples were collected from 243 individuals to assess the effects of drug initiation and discontinuation on the microbiome. RESULTS: We found that numerous drugs across different treatment categories influence the microbiome; more than 70% of the drugs we profiled had not been examined before. Individuals exposed to multiple drugs, polypharmacy, showed distinct gut microbiome structures harboring significantly more abundant upper gastrointestinal species and several nosocomial pathobionts due to additive drug effects. Polypharmacy was also associated with microbial functions, including the reduction of short-chain fatty acid metabolism and increased bacterial stress responses. Even nonantibiotic drugs were significantly correlated with an increased antimicrobial resistance potential through polypharmacy. Notably, a 2-time points dataset revealed the alteration and recovery of the microbiome in response to drug initiation and cessation, corroborating the observed drug-microbe associations in the cross-sectional cohort. CONCLUSION: Our large-scale metagenomics unravels extensive and disruptive impacts of individual and multiple drug exposures on the human gut microbiome, providing a drug-microbe catalog as a basis for a deeper understanding of the role of the microbiome in drug efficacy and toxicity.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Estudos Transversais , Ácidos Graxos Voláteis/farmacologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenômica
18.
Microbiol Resour Announc ; 11(7): e0035522, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861551

RESUMO

Methanothermobacter tenebrarum strain RMAST has a complete genomic length of 1,472,762 bp, a GC content of 42.1%, 1,599 coding DNA sequences (CDSs), 1 CRISPR array, 3 rRNAs, and 38 tRNAs.

19.
Sci Total Environ ; 836: 155520, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508250

RESUMO

Effective biological utilization of wood biomass is necessary worldwide. Since several insect larvae can use wood biomass as a nutrient source, studies on their digestive microbial structures are expected to reveal a novel rule underlying wood biomass processing. Here, structural inferences for inhabitant bacteria involved in carbon and nitrogen metabolism for beetle larvae, an insect model, were performed to explore the potential rules. Bacterial analysis of larval feces showed enrichment of the phyla Chroloflexi, Gemmatimonadetes, and Planctomycetes, and the genera Bradyrhizobium, Chonella, Corallococcus, Gemmata, Hyphomicrobium, Lutibacterium, Paenibacillus, and Rhodoplanes, as bacteria potential involved in plant growth promotion, nitrogen cycle modulation, and/or environmental protection. The fecal abundances of these bacteria were not necessarily positively correlated with their abundances in the habitat, indicating that they were selectively enriched in the feces of the larvae. Correlation and association analyses predicted that common fecal bacteria might affect carbon and nitrogen metabolism. Based on these hypotheses, structural equation modeling (SEM) statistically estimated that inhabitant bacterial groups involved in carbon and nitrogen metabolism were composed of the phylum Gemmatimonadetes and Planctomycetes, and the genera Bradyrhizobium, Corallococcus, Gemmata, and Paenibacillus, which were among the fecal-enriched bacteria. Nevertheless, the selected common bacteria, i.e., the phyla Acidobacteria, Armatimonadetes, and Bacteroidetes and the genera Candidatus Solibacter, Devosia, Fimbriimonas, Gemmatimonas Opitutus, Sphingobium, and Methanobacterium, were necessary to obtain good fit indices in the SEM. In addition, the composition of the bacterial groups differed depending upon metabolic targets, carbon and nitrogen, and their stable isotopes, δ13C and δ15N, respectively. Thus, the statistically derived causal structural models highlighted that the larval fecal-enriched bacteria and common symbiotic bacteria might selectively play a role in wood biomass carbon and nitrogen metabolism. This information could confer a new perspective that helps us use wood biomass more efficiently and might stimulate innovation in environmental industries in the future.


Assuntos
Carbono , Besouros , Acidobacteria/metabolismo , Animais , Bactérias/metabolismo , Carbono/metabolismo , Besouros/metabolismo , Larva/metabolismo , Nitrogênio/metabolismo , Madeira/metabolismo
20.
Sci Rep ; 12(1): 3359, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233003

RESUMO

Several studies suggest the involvement of dietary habits and gut microbiome in allergic diseases. However, little is known about the nutritional and gut microbial factors associated with the risk of allergic rhinitis (AR). We recruited 186 participants with symptoms of AR and 106 control subjects without symptoms of AR at the Hitachi Health Care Center, Japan. The habitual consumption of 42 selected nutrients were examined using the brief-type self-administered diet history questionnaire. Faecal samples were collected and subjected to amplicon sequencing of the 16S ribosomal RNA gene hypervariable regions. Association analysis revealed that four nutrients (retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR. Among 40 genera examined, relative abundance of Prevotella and Escherichia were associated with AR. Furthermore, significant statistical interactions were observed between retinol and Prevotella. The age- and sex-adjusted odds of AR were 25-fold lower in subjects with high retinol intake and high Prevotella abundance compared to subjects with low retinol intake and low Prevotella abundance. Our data provide insights into complex interplay between dietary nutrients, gut microbiome, and the development of AR.


Assuntos
Microbioma Gastrointestinal , Rinite Alérgica , Fezes , Humanos , Prevotella/genética , RNA Ribossômico 16S/genética , Rinite Alérgica/complicações , Rinite Alérgica/epidemiologia , Vitamina A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...