Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(2): 269-286, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36449075

RESUMO

KEY MESSAGE: OsJAZ2 protein has a propensity to form condensates, possibly by multivalent interactions, and can be used to construct artificial compartments in plant cells. Eukaryotic cells contain various membraneless organelles, which are compartments consisting of proteinaceous condensates formed by phase separation. Such compartments are attractive for bioengineering and synthetic biology, because they can modify cellular function by the enrichment of molecules of interest and providing an orthogonal reaction system. This study reports that Oryza sativa JAZ2 protein (OsJAZ2) is an atypical jasmonate signalling regulator that can form large condensates in both the nucleus and cytosol of O. sativa cells. TIFY and Jas domains and low-complexity regions contribute to JAZ2 condensation, possibly by multivalent interaction. Fluorescence recovery after photobleaching (FRAP) analysis suggests that JAZ2 condensates form mostly gel-like or solid compartments, but can also be in a liquid-like state. Deletion of the N-terminal region or the TIFY domain of JAZ2 causes an increase in the mobile fraction of JAZ2 condensates, moderately. Moreover, JAZ2 can also form liquid-like condensates when expressed in Nicotiana benthamiana cells. The recombinant JAZ2 fused to the green fluorescent protein (GFP) forms condensate in vitro, suggesting that the intermolecular interaction of JAZ2 molecules is a driving force for condensation. These results suggest the potential use of JAZ2 condensates to construct artificial membraneless organelles in plant cells.


Assuntos
Nicotiana , Oryza , Nicotiana/genética , Oryza/genética , Núcleo Celular , Citosol , Proteínas de Fluorescência Verde/genética
2.
J Plant Res ; 134(5): 1061-1081, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34279738

RESUMO

The major tissues of the cereal endosperm are the starchy endosperm (SE) in the inner and the aleurone layer (AL) at the outer periphery. The fates of the cells that comprise these tissues are determined according to positional information; however, our understanding of the underlying molecular mechanisms remains limited. Here, we conducted a high-resolution spatiotemporal analysis of the rice endosperm transcriptome during early cellularization. In rice, endosperm cellularization proceeds in a concentric pattern from a primary alveolus cell layer, such that developmental progression can be defined by the number of cell layers. Using laser-capture microdissection to obtain precise tissue sections, transcriptomic changes were followed through five histologically defined stages of cellularization from the syncytial to 3-cell layer (3 L) stage. In addition, transcriptomes were compared between the inner and the outermost peripheral cell layers. Large differences in the transcriptomes between stages and between the inner and the peripheral cells were found. SE attributes were expressed at the alveolus-cell-layer stage but were preferentially activated in the inner cell layers that resulted from periclinal division of the alveolus cell layer. Similarly, AL attributes started to be expressed only after the 2 L stage and were localized to the outermost peripheral cell layer. These results indicate that the first periclinal division of the alveolus cell layer is asymmetric at the transcriptome level, and that the cell-fate-specifying positional cues and their perception system are already operating before the first periclinal division. Several genes related to epidermal identity (i.e., type IV homeodomain-leucine zipper genes and wax biosynthetic genes) were also found to be expressed at the syncytial stage, but their expression was localized to the outermost peripheral cell layer from the 2 L stage onward. We believe that our findings significantly enhance our knowledge of the mechanisms underlying cell fate specification in rice endosperm.


Assuntos
Endosperma , Oryza , Endosperma/genética , Endosperma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Análise Espaço-Temporal , Transcriptoma
3.
Plant Signal Behav ; 10(12): e1105418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479492

RESUMO

We have recently shown that the expression onset of a seedling-specific gene, PYK10, occurs in a cell-by-cell manner upon the transition from the embryonic to the postgerminative phase and during embryogenesis in seed maturation regulator mutants such as lec1, and implicated epigenetic mechanisms in the process. Here, the role of the NAI1 transcription factor required for PYK10 expression in the developmental switching of PYK10 was investigated. The cell-by-cell onset of PYK10-EGFP in lec1 embryo was still observed in the nai1 background, but at greatly reduced levels. Decreases in the level of the repressive histone mark, H3K27 trimethylation observed upon the transition to the postgeminative phase normally occurred in nai1. However, concomitant increases in the level of the active mark, H3K4 trimethylation observed in wild type was significantly compromised in nai1. These results indicate that the switching of PYK10 upon developmental phase transition involves 2 separable steps of chromatin state change.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Germinação/genética , Código das Histonas , Plântula/genética , beta-Glucosidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Metilação , Mutação/genética , beta-Glucosidase/genética
4.
Plant Cell Physiol ; 56(10): 1867-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26329877

RESUMO

Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Tolerantes a Sal/genética , Ciclopentanos/farmacologia , Secas , Temperatura Alta , Oryza/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia
5.
Plant Signal Behav ; 10(7): e1046667, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251886

RESUMO

Plant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile. The height increase occurred through enhanced elongation of internodes in the absence of concomitant cell elongation, unlike previous findings with coi1 knock-down plants. Thus, modulating JA metabolism can increase the number of elongated cells in an internode. Based on these and previous findings, we discuss the difference in the effects of CYP94C2b overexpression vs. coi1 knock-down.


Assuntos
Genes de Plantas , Oryza/anatomia & histologia , Oryza/genética , Proteínas de Plantas/genética , Caules de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Estresse Fisiológico
6.
Plant Cell Physiol ; 56(4): 779-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25637374

RESUMO

The plant hormone jasmonate and its conjugates (JAs) have important roles in growth control, leaf senescence and defense responses against insects and microbial attacks. JA biosynthesis is induced by several stresses, including mechanical wounding, pathogen attacks, drought and salinity stresses. However, the roles of JAs under abiotic stress conditions are unclear. Here we report that increased expression of the Cyt P450 family gene CYP94C2b enhanced viability of rice plants under saline conditions. This gene encodes an enzyme closely related to CYP94C1 that catalyzes conversion of bioactive jasmonate-isoleucine (JA-Ile) into 12OH-JA-Ile and 12COOH-JA-Ile. Inactivation of JA was facilitated in a rice line with enhanced CYP94C2b expression, and responses to exogenous JA and wounding were alleviated. Moreover, salt stress-induced leaf senescence but not natural senescence was delayed in the transgenic rice. These results suggest that bioactive JAs have a negative effect on viability under salt stress conditions and demonstrate that manipulating JA metabolism confers enhanced salt tolerance in rice.


Assuntos
Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Oryza/genética , Oxilipinas/farmacologia , Tolerância ao Sal/genética , Proliferação de Células/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Genes de Plantas , Oryza/citologia , Oryza/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
7.
Plant J ; 81(1): 1-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327517

RESUMO

The endosperm of cereal grains represents the most important source of human nutrition. In addition, the endosperm provides many investigatory opportunities for biologists because of the unique processes that occur during its ontogeny, including syncytial development at early stages. Rice endospermless 1 (enl1) develops seeds lacking an endosperm but carrying a functional embryo. The enl1 endosperm produces strikingly enlarged amoeboid nuclei. These abnormal nuclei result from a malfunction in mitotic chromosomal segregation during syncytial endosperm development. The molecular identification of the causal gene revealed that ENL1 encodes an SNF2 helicase family protein that is orthologous to human Plk1-Interacting Checkpoint Helicase (PICH), which has been implicated in the resolution of persistent DNA catenation during anaphase. ENL1-Venus (enhanced yellow fluorescent protein (YFP)) localizes to the cytoplasm during interphase but moves to the chromosome arms during mitosis. ENL1-Venus is also detected on a thread-like structure that connects separating sister chromosomes. These observations indicate the functional conservation between PICH and ENL1 and confirm the proposed role of PICH. Although ENL1 dysfunction also affects karyokinesis in the root meristem, enl1 plants can grow in a field and set seeds, indicating that its indispensability is tissue-dependent. Notably, despite the wide conservation of ENL1/PICH among eukaryotes, the loss of function of the ENL1 ortholog in Arabidopsis (CHR24) has only marginal effects on endosperm nuclei and results in normal plant development. Our results suggest that ENL1 is endowed with an indispensable role to secure the extremely rapid nuclear cycle during syncytial endosperm development in rice.


Assuntos
DNA Helicases/fisiologia , Endosperma/crescimento & desenvolvimento , Oryza/enzimologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Segregação de Cromossomos , DNA Helicases/genética , DNA Helicases/metabolismo , Endosperma/enzimologia , Endosperma/genética , Mitose , Dados de Sequência Molecular , Mutação , Oryza/embriologia , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
8.
Plant Signal Behav ; 9(10): e970414, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482801

RESUMO

In a determinate meristem, such as a floral meristem, a genetically determined number of organs are produced before the meristem is terminated. In rice, iterative formation of organs during flower development with defects in meristem determinacy, classically called 'proliferation', is caused by several mutations and observed in dependence on environmental conditions. Here we report that overexpression of several JAZ proteins, key factors in jasmonate signaling, with mutations in the Jas domains causes an increase in the numbers of organs in florets, aberrant patterns of organ formation and repetitious organ production in spikelets. Our results imply that JAZ factors modulate mechanisms that regulate meristem functions during spikelet development.


Assuntos
Pleiotropia Genética , Mutação/genética , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Flores/crescimento & desenvolvimento , Dados de Sequência Molecular , Morfogênese , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína
9.
Plant Cell Physiol ; 55(12): 2112-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25282558

RESUMO

LEC1, LEC2, FUS3 and ABI3 (collectively abbreviated LEC/ABI3 here) are required for embryo maturation and have apparent roles in repressing post-germinative development. lec mutant embryos exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. Although the roles of LEC/ABI3 as positive regulators of embryo maturation have been extensively studied, their roles in the negative regulation of post-germinative development have not been explored in detail. Based on microarray analyses, we chose PYK10, which encodes an endoplasmic reticulum (ER)-body-localized protein, as a molecular marker of post-germinative development. lec/abi3 embryos exhibited PYK10 misexpression and the formation of 'constitutive' ER-bodies, which develop specifically during the seedling stage, confirming the heterochronic nature of these mutants at both the gene expression and cellular levels. The PYK10 reporter expression in lec1 embryos started as early as the globular-heart transition stage. The onset of PYK10 promoter-enhanced green fluorescent protein (EGFP) reporter expression occurred in a stochastic, cell-by-cell manner in both developing lec/abi3 embryos and germinating wild-type seedlings. Additionally, clustered EGFP-positive cells were frequently found along cell files, probably representing the transmission of the expression state via cell division. These observations, together with the results of the experiments using PYK10-EGFP/PYK10-CFP double reporter transgenic lines and the analyses of H3K27me3 levels in the PYK10 chromatin, suggested the involvement of epigenetic mechanisms in repressing post-germinative genes during embryogenesis and derepressing these genes upon the transition to post-germinative development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , beta-Glucosidase/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cotilédone/citologia , Cotilédone/embriologia , Cotilédone/genética , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Germinação/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/citologia , Folhas de Planta/embriologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/embriologia , Plântula/genética , Sementes/citologia , Sementes/embriologia , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta-Glucosidase/metabolismo
10.
Plant Signal Behav ; 8(11): e26256, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23989667

RESUMO

Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of plants, in accordance with their sessile lifestyle. This is linked to the balance between plasticity and rigidity of cells in the root apex, and thus is coordinated with the control of cell wall properties. However, mechanisms underlying such harmonization are not well understood, in particular under stressful conditions. We have recently demonstrated that RICE SALT SENSITIVE3 (RSS3), a nuclear factor that mediates restrictive expression of jasmonate-induced genes, plays an important role in root elongation under saline conditions. In this study, we report that loss-of-function of RSS3 results in changes in cell wall properties such as lignin deposition and sensitivity to a cellulose synthase inhibitor, concomitant with altered expression of genes involved in cell wall metabolism. Based on these and previous phenotypic observations of the rss3 mutant, we propose that RSS3 plays a role in the coordinated control of root elongation and cell wall plasticity in the root apex.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Parede Celular/metabolismo , Meristema/citologia , Oryza/citologia , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Benzamidas/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/genética , Microespectrofotometria , Oryza/efeitos dos fármacos , Oryza/genética , Ligação Proteica/efeitos dos fármacos , Espectrofotometria Ultravioleta
11.
Plant Cell Physiol ; 54(6): 848-58, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23628996

RESUMO

By using high-resolution two-dimensional PAGE followed by phosphoprotein-specific staining and peptide mass fingerprint analysis along with other assays, we found that α-tubulin is phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. The onset of the phosphorylation response was as early as 2 min after hyperosmotic stress treatment, and a major proportion of α-tubulin was phosphorylated after 60 min in root tissues. However, the phosphorylated form of α-tubulin was readily dephosphorylated upon stress removal. The phosphorylation site was identified as Thr349 by comprehensive mutagenesis of serine/threonine residues in a rice α-tubulin isoform followed by evaluation in cultured cell protoplasts. This residue is located at the surface for the interaction with ß-tubulin in polymerized α-ß tubulin dimers and has been proposed to be directly involved in this interaction. Thus, α-tubulin phosphorylation was considered to occur on free tubulin dimers in response to hyperosmotic stress. The incorporation of green fluorescent protein (GFP)-α-tubulin into cortical microtubules was completely inhibited in transgenic Arabidopsis when Thr349 was substituted with glutamate or aspartate. Using transgenic Arabidopsis plants expressing GFP-α-tubulin, we found that hyperosmotic stress causes extensive cortical microtubule depolymerization. Microtubule-destabilizing treatments such as propyzamide or oryzalin and temperature stresses resulted in α-tubulin phosphorylation, whereas hyperosmotic stress-induced α-tubulin phosphorylation was partially inhibited by taxol, which stabilizes microtubules. These results and the three-dimensional location of the phosphorylation site suggested that microtubules are depolymerized in response to hyperosmotic stress via α-tubulin phosphorylation. Together, the results of the present study reveal a novel mechanism that globally regulates the microtubule polymerization.


Assuntos
Arabidopsis/metabolismo , Oryza/metabolismo , Pressão Osmótica , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Tubulina (Proteína)/metabolismo , Arabidopsis/efeitos dos fármacos , Células Cultivadas , Microtúbulos/metabolismo , Oryza/citologia , Fosfoproteínas/metabolismo , Fosforilação , Fosfotreonina/metabolismo , Polimerização , Multimerização Proteica , Proteômica , Protoplastos/metabolismo , Plântula/metabolismo , Temperatura
12.
Plant Cell ; 25(5): 1709-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23715469

RESUMO

Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salinidade , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido
13.
Plant Physiol Biochem ; 61: 54-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23041461

RESUMO

Post embryonic growth of plants depends on cell division activity in the shoot and root meristems, in conjunction with subsequent cell differentiation. Under environmental stress conditions, where plant growth is moderately impaired, the meristematic activity is maintained by mechanisms as yet unknown. We previously showed that the rice protein RSS1, whose stability is regulated depending on the cell cycle phases, is a key factor for the maintenance of meristematic activity under stressful conditions. RSS1 interacts with a catalytic subunit of protein phosphatase 1 (PP1), but other molecular characteristics are largely unknown. Here we show that RSS1 interacts with all the PP1 expressed in the shoot apex of rice. This interaction requires one of the conserved regions of RSS1, which is important for RSS1 function. Interestingly, the recombinant RSS1 protein is highly resistant to heat with respect to its anti-coagulability and binding activity to PP1. The features of RSS1 are reminiscent of those of inhibitor-2 of animals, although it is likely that the mode of function of RSS1 is different from that of inhibitor-2. Noticeably, RSS1 binds to PP1 under extremely high ionic strength conditions in vitro. Therefore, RSS1 possibly functions by forming a stable complex with PP1.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteína Fosfatase 1/metabolismo , Estresse Fisiológico , Animais , Meristema/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo
14.
Genetics ; 189(1): 83-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21705754

RESUMO

Chromatin reconstitution after DNA replication and repair is essential for the inheritance of epigenetic information, but mechanisms underlying such a process are still poorly understood. Previously, we proposed that Arabidopsis BRU1 functions to ensure the chromatin reconstitution. Loss-of-function mutants of BRU1 are hypersensitive to genotoxic stresses and cause release of transcriptional gene silencing of heterochromatic genes. In this study, we show that BRU1 also plays roles in gene regulation in euchromatic regions. bru1 mutations caused sporadic ectopic expression of genes, including those that encode master regulators of developmental programs such as stem cell maintenance and embryogenesis. bru1 mutants exhibited adventitious organogenesis, probably due to the misexpression of such developmental regulators. The key regulatory genes misregulated in bru1 alleles were often targets of PcG SET-domain proteins, although the overlap between the bru1-misregulated and PcG SET-domain-regulated genes was limited at a genome-wide level. Surprisingly, a considerable fraction of the genes activated in bru1 were located in several subchromosomal regions ranging from 174 to 944 kb in size. Our results suggest that BRU1 has a function related to the stability of subchromosomal gene regulation in the euchromatic regions, in addition to the maintenance of chromatin states coupled with heritable epigenetic marks.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação/genética , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Proteínas do Grupo Polycomb , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
15.
Nat Commun ; 2: 278, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21505434

RESUMO

Plant growth and development are sustained by continuous cell division in the meristems, which is perturbed by various environmental stresses. For the maintenance of meristematic functions, it is essential that cell division be coordinated with cell differentiation. However, it is unknown how the proliferative activities of the meristems and the coordination between cell division and differentiation are maintained under stressful conditions. Here we show that a rice protein, RSS1, whose stability is controlled by cell cycle phases, contributes to the vigour of meristematic cells and viability under salinity conditions. These effects of RSS1 are exerted by regulating the G1-S transition, possibly through an interaction of RSS1 with protein phosphatase 1, and are mediated by the phytohormone, cytokinin. RSS1 is conserved widely in plant lineages, except eudicots, suggesting that RSS1-dependent mechanisms might have been adopted in specific lineages during the evolutionary radiation of angiosperms.


Assuntos
Interfase/genética , Meristema/fisiologia , Oryza/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Citocininas/metabolismo , Primers do DNA/genética , Immunoblotting , Hibridização In Situ , Interfase/fisiologia , Análise em Microsséries , Microscopia de Fluorescência , Dados de Sequência Molecular , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Proteína Fosfatase 1/metabolismo , Salinidade , Técnicas do Sistema de Duplo-Híbrido
16.
Plant Cell Physiol ; 52(4): 676-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21421569

RESUMO

We have previously reported that transgenic Arabidopsis plants overexpressing the wheat dehydrin DHN-5 show enhanced tolerance to osmotic stresses. In order to understand the mechanisms through which DHN-5 exerts this effect, we performed transcriptome profiling using the Affymetrix ATH1 microarray. Our data show an altered expression of 77 genes involved mainly in transcriptional regulation, cellular metabolism, stress tolerance and signaling. Among the up-regulated genes, we identified those which are known to be stress-related genes. Several late embryogenesis abundant (LEA) genes, ABA/stress-related genes (such as RD29B) and those involved in pathogen responses (PR genes) are among the most up-regulated genes. In addition, the MDHAR gene involved in the ascorbate biosynthetic pathway was also up-regulated. This up-regulation was correlated with higher ascorbate content in two dehydrin transgenic lines. In agreement with this result and as ascorbate is known to be an antioxidant, we found that both transgenic lines show enhanced tolerance to oxidative stress caused by H2O2. On the other hand, multiple types of transcription factors constitute the largest group of the down-regulated genes. Moreover, three members of the jasmonate-ZIM domain (JAZ) proteins which are negative regulators of jasmonate signaling were severely down-regulated. Interestingly, the dehydrin-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants and changes in regulation of jasmonate-responsive genes, in a manner similar to that in the jasmonate-insensitive jai3-1 mutant. Altogether, our data unravel the potential pleiotropic effects of DHN-5 on both abiotic and biotic stress responses in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Triticum/metabolismo , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Pressão Osmótica , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Transcriptoma , Triticum/genética , Regulação para Cima/genética
17.
Plant Cell Physiol ; 51(12): 2031-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21045071

RESUMO

The FUSCA3 (FUS3) transcription factor is considered a master regulator of seed maturation because a wide range of seed maturation events are impaired in its defective mutant. To identify comprehensively genes under the control of FUS3, two types of microarray experiments were performed. First, transgenic plants in which FUS3 expression could be induced by the application of estrogen (ESTR) were used to identify any genes up-regulated in young seedlings of Arabidopsis in response to the ectopic expression of FUS3. Secondly, the transcriptomes of the fus3 mutant and wild-type developing seeds were compared. The combined results of these experiments identified genes under the relatively immediate and robust control of FUS3 during seed development. The analysis has extended the range of identified gene types under the control of FUS3. The genes positively controlled by FUS3 are not confined to previously known seed maturation-related genes and include those involved in the production of secondary metabolites, such as glucosinolates, phenylpropanoids and flavonoids, and those involved in primary metabolism, such as photosynthesis and fatty acid biosynthesis. Furthermore, several different patterns were identified in the manner of ectopic activation by FUS3 with respect to the induction kinetics and ABA requirement of downstream gene induction depending on the nature of developmental regulation, suggesting mechanistic diversity of gene regulation by FUS3.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Estrogênios/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas , Plântula/genética , Plântula/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
18.
Proc Natl Acad Sci U S A ; 107(13): 5792-7, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20220098

RESUMO

Seed dormancy provides a strategy for flowering plants to survive adverse natural conditions. It is also an important agronomic trait affecting grain yield, quality, and processing performance. We cloned a rice quantitative trait locus, Sdr4, which contributes substantially to differences in seed dormancy between japonica (Nipponbare) and indica (Kasalath) cultivars. Sdr4 expression is positively regulated by OsVP1, a global regulator of seed maturation, and in turn positively regulates potential regulators of seed dormancy and represses the expression of postgerminative genes, suggesting that Sdr4 acts as an intermediate regulator of dormancy in the seed maturation program. Japonica cultivars have only the Nipponbare allele (Sdr4-n), which endows reduced dormancy, whereas both the Kasalath allele (Srd4-k) and Sdr4-n are widely distributed in the indica group, indicating prevalent introgression. Srd4-k also is found in the wild ancestor Oryza rufipogon, whereas Sdr4-n appears to have been produced through at least two mutation events from the closest O. rufipogon allele among the accessions examined. These results are discussed with respect to possible selection of the allele during the domestication process.


Assuntos
Genes de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Alelos , Sequência de Bases , Clonagem Molecular , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Teste de Complementação Genética , Mutação INDEL , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
19.
Genes Genet Syst ; 84(1): 95-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19420805

RESUMO

Transcription factors, RAV1 and RAV2 from Arabidopsis thaliana, contain two distinct DNA-binding domains, AP2/EREBP and B3, both of which are uniquely found in plants. We found that transcripts of RAV1 and RAV2 were upregulated transiently by touch-related mechanical stimuli. However, the temporal expression patterns of RAV1 and RAV2 differed from those of known touch-induced genes. A striking feature of mechanical stimulus-induced expression of RAV1 and RAV2 was that it was biphasic; the RAV1 and RAV2 expression was reinduced and sustained after a rapid and transient induction. The extent of both transient and subsequent upregulation by touch-stimuli depended on the dose of the initial stimulus. Analysis of transgenic A. thaliana plants carrying a RAV2 promoter-GUS fusion gene indicated that the transient mechanical stimulus-induced RAV2 expression was primarily controlled by its promoter. Histochemical analysis of the transgenic plants revealed that GUS expression was strongly induced in the petioles and primordia of true leaves and shoot apical meristems, which may be related to the alteration in plant growth pattern caused by touch-stimuli. Because RAV1 has been suggested to be a negative regulator of growth and development, the dose-dependent biphasic upregulation of RAV1 and RAV2 may serve not only for immediate physiological responses and but also for developmental adaptation in response to the environmental stimuli.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Especificidade de Órgãos/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Fatores de Transcrição/genética , Regulação para Cima/fisiologia
20.
Plant J ; 58(5): 843-56, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19207209

RESUMO

LEAFY COTYLEDON 1 (LEC1) plays vital roles in the regulation of seed maturation in Arabidopsis. LEC1 encodes a homolog of yeast HAP3 or mammalian NF-YB/CBF-A subunit of trimeric CCAAT binding factor (CBF). Among the nine paralogs of NF-YB in Arabidopsis, LEC1-LIKE (L1L) is most closely related to LEC1, and can complement the lec1 mutation when expressed under the control of the LEC1 promoter. Although the nature of the B3-type seed maturation regulators as transcription factors have been investigated, knowledge of the molecular action of LEC1 is limited. When co-expressed with NF-YC2 in the presence of ABA, we found that LEC1 or L1L, but not other NF-YBs, activated the promoter of CRUCIFERIN C (CRC), which encodes a seed storage protein. However, additional expression of an NF-YA subunit interfered with the activation. The LEC1/L1L-[NF-YC2] activation depended on ABA-response elements present in the promoter, which led to the finding that LEC1/L1L-[NF-YC2] can strongly activate the CRC promoter in the absence of ABA when co-expressed with a seed-specific ABA-response element (ABRE)-binding factor, bZIP67. Functional coupling of LEC1/L1L-[AtNF-YC2] and bZIP67 was also observed in the regulation of sucrose synthase 2 (SUS2). Immunoprecipitation experiments revealed that L1L and bZIP67 formed a protein complex in vivo. These results demonstrate a novel plant-specific mechanism for NF-Y subunit function that enables LEC1 and L1L to regulate a defined developmental network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transcrição Gênica , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Regiões Promotoras Genéticas , RNA de Plantas/genética , Proteínas Repressoras/metabolismo , Elementos de Resposta , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...