Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 801: 149619, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34438150

RESUMO

River systems have undergone a massive transformation since the Anthropocene. The natural properties of river systems have been drastically altered and reshaped, limiting the use of management frameworks, their scientific knowledge base and their ability to provide adequate solutions for current problems and those of the future, such as climate change, biodiversity crisis and increased demands for water resources. To address these challenges, a socioecologically driven research agenda for river systems that complements current approaches is needed and proposed. The implementation of the concepts of social metabolism and the colonisation of natural systems into existing concepts can provide a new basis to analyse the coevolutionary coupling of social systems with ecological and hydrological (i.e., 'socio-ecohydrological') systems within rivers. To operationalize this research agenda, we highlight four initial core topics defined as research clusters (RCs) to address specific system properties in an integrative manner. The colonisation of natural systems by social systems is seen as a significant driver of the transformation processes in river systems. These transformation processes are influenced by connectivity (RC 1), which primarily addresses biophysical aspects and governance (RC 2), which focuses on the changes in social systems. The metabolism (RC 3) and vulnerability (RC 4) of the social and natural systems are significant aspects of the coupling of social systems and ecohydrological systems with investments, energy, resources, services and associated risks and impacts. This socio-ecohydrological research agenda complements other recent approaches, such as 'socio-ecological', 'socio-hydrological' or 'socio-geomorphological' systems, by focusing on the coupling of social systems with natural systems in rivers and thus, by viewing the socioeconomic features of river systems as being just as important as their natural characteristics. The proposed research agenda builds on interdisciplinarity and transdisciplinarity and requires the implementation of such programmes into the education of a new generation of river system scientists, managers and engineers who are aware of the transformation processes and the coupling between systems.


Assuntos
Rios , Recursos Hídricos , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Previsões , Hidrologia
3.
Sci Rep ; 10(1): 13106, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753674

RESUMO

The goals of the European Water Framework Directive changed the perspective on rivers from human to ecosystem-based river management. After decades of channelizing and damming rivers, restoration projects are applied with more or less successful outcomes. The anthropogenic influence put on rivers can change their physical parameters and result in a different morphological type of river. Using the Ammer River as an example, a comparison between applied systems of corridor determination based on historical maps and data; calculation of regime width; and the change in parameters and river typology are pointed out. The results showed (a) a change in stream power and morphology (b) great difference between the historical and the predicted river type and (c) that regulated rivers can have a near-natural morphology.

4.
Sci Total Environ ; 718: 137369, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32109815

RESUMO

The identification and prioritization of sites for conservation actions to protect biodiversity in lotic systems is crucial when economic resources or available areas are limited. Challenges include the incorporation of multi-scale interactions, and the application of species distribution models (SDMs) to rare organism with multiple life stages. To support the planning of conservation actions for the highly endangered Freshwater Pearl Mussel Margaritifera margaritifera (FPM), this paper aims at developing an ecohydrological modeling cascade including a hydrological model (SWAT) and a hydraulic model (HEC-RAS). Building on hydrology and hydraulics, Random Forest models for potential risk to juveniles due to sand accumulation, SDMs for adults habitat niche, and a landscape connectivity assessment of dispersal potential were developed. The feasibility of such models integration was tested in the Aist catchment (630 km2) in Austria. The potential FPM habitat and the sand accumulation risk for the whole catchment were predicted with good accuracy. Results show that while the potentially suitable habitats for adults FPM cover 34% of the river network, only few habitat patches can maximize the dispersal potential (4% of the river network) and even less are showing limited impact of accumulations (3.5% of river network). No habitat patch that meets all the three criteria is available, suggesting approaches that target the patch-specific critical life stage-factors are promising for conservation.


Assuntos
Bivalves , Animais , Áustria , Conservação dos Recursos Naturais , Ecossistema , Água Doce , Rios
5.
Sci Total Environ ; 573: 574-584, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27580469

RESUMO

Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design.


Assuntos
Migração Animal , Modelos Teóricos , Rios/química , Salmo salar/crescimento & desenvolvimento , Salmo salar/fisiologia , Movimentos da Água , Animais , Noruega , Dinâmica Populacional , Centrais Elétricas , Estações do Ano
6.
Sci Total Environ ; 543(Pt A): 828-845, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26589137

RESUMO

In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge exchange and knowledge transfer within the basin to reach the goal of integrated basin management.

7.
Environ Manage ; 42(2): 279-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18437454

RESUMO

At the Sulm River, an Austrian lowland river, an ecologically orientated flood protection project was carried out from 1998-2000. Habitat modeling over a subsequent 3-year monitoring program (2001-2003) helped assess the effects of river bed embankment and of initiating a new meander by constructing a side channel and allowing self-developing side erosion. Hydrodynamic and physical habitat models were combined with fish-ecological methods. The results show a strong influence of riverbed dynamics on the habitat quality and quantity for the juvenile age classes (0+, 1+, 2+) of nase (Chondrostoma nasus), a key fish species of the Sulm River. The morphological conditions modified by floods changed significantly and decreased the amount of weighted usable areas. The primary factor was river bed aggradation, especially along the inner bend of the meander. This was a consequence of the reduced sediment transport capacity due to channel widening in the modeling area. The higher flow velocities and shallower depths, combined with the steeper bank angle, reduced the Weighted Useable Areas (WUAs) of habitats for juvenile nase. The modeling results were evaluated by combining results of mesohabitat-fishing surveys and habitat quality assessments. Both, the modeling and the fishing results demonstrated a reduced suitability of the habitats after the morphological modifications, but the situation was still improved compared to the pre-restoration conditions at the Sulm River.


Assuntos
Conservação dos Recursos Naturais/métodos , Cyprinidae/fisiologia , Ecossistema , Rios , Animais , Áustria , Água/química , Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...