Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(24): 240602, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949346

RESUMO

Stabilizer entropies (SEs) are measures of nonstabilizerness or "magic" that quantify the degree to which a state is described by stabilizers. SEs are especially interesting due to their connections to scrambling, localization and property testing. However, applications have been limited so far as previously known measurement protocols for SEs scale exponentially with the number of qubits. Here, we efficiently measure SEs for integer Rényi index n>1 via Bell measurements. The SE of N-qubit quantum states can be measured with O(n) copies and O(nN) classical computational time, where for even n we additionally require the complex conjugate of the state. We provide efficient bounds of various nonstabilizerness monotones that are intractable to compute beyond a few qubits. Using the IonQ quantum computer, we measure SEs of random Clifford circuits doped with non-Clifford gates and give bounds for the stabilizer fidelity, stabilizer extent, and robustness of magic. We provide efficient algorithms to measure Clifford-averaged 4n-point out-of-time-order correlators and multifractal flatness. With these measures we study the scrambling time of doped Clifford circuits and random Hamiltonian evolution depending on nonstabilizerness. Counterintuitively, random Hamiltonian evolution becomes less scrambled at long times, which we reveal with the multifractal flatness. Our results open up the exploration of nonstabilizerness with quantum computers.

2.
Sci Adv ; 8(40): eabn9783, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206336

RESUMO

Quantum autoencoders serve as efficient means for quantum data compression. Here, we propose and demonstrate their use to reduce resource costs for quantum teleportation of subspaces in high-dimensional systems. We use a quantum autoencoder in a compress-teleport-decompress manner and report the first demonstration with qutrits using an integrated photonic platform for future scalability. The key strategy is to compress the dimensionality of input states by erasing redundant information and recover the initial states after chip-to-chip teleportation. Unsupervised machine learning is applied to train the on-chip autoencoder, enabling the compression and teleportation of any state from a high-dimensional subspace. Unknown states are decompressed at a high fidelity (~0.971), obtaining a total teleportation fidelity of ~0.894. Subspace encodings hold great potential as they support enhanced noise robustness and increased coherence. Laying the groundwork for machine learning techniques in quantum systems, our scheme opens previously unidentified paths toward high-dimensional quantum computing and networking.

3.
Phys Rev Lett ; 115(6): 067403, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296132

RESUMO

Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

4.
Phys Rev Lett ; 113(26): 266805, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615373

RESUMO

Nonlinear continuum generation from diffraction-limited hot spots in rough silver films exhibits striking narrow-band intensity resonances in excitation wavelength. Time-domain Fourier spectroscopy uncovers how these resonances arise due to the formation of a "plasmon staircase", a discreteness in the fundamental oscillation of the plasmon excitations responsible for generating the white-light continuum. Whereas multiple scattering from discrete antennas can be invoked to explain hot spot formation in random assemblies of isolated particles, hot spots in films of fused nanoparticles are excited by interfering propagating surface plasmons, launched by scattering from individual nanoparticle antennas. For closed films, discrete propagating plasmons interact coherently over distances of tens of microns to pump the hot spot.

5.
J Deaf Stud Deaf Educ ; 16(3): 343-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21208998

RESUMO

There is a current need for reliable and valid test instruments in different countries in order to monitor deaf children's sign language acquisition. However, very few tests are commercially available that offer strong evidence for their psychometric properties. A German Sign Language (DGS) test focusing on linguistic structures that are acquired in preschool- and school-aged children (4-8 years old) is urgently needed. Using the British Sign Language Receptive Skills Test, that has been standardized and has sound psychometric properties, as a template for adaptation thus provides a starting point for tests of a sign language that is less documented, such as DGS. This article makes a novel contribution to the field by examining linguistic, cultural, and methodological issues in the process of adapting a test from the source language to the target language. The adapted DGS test has sound psychometric properties and provides the basis for revision prior to standardization.


Assuntos
Avaliação Educacional/métodos , Língua de Sinais , Fatores Etários , Criança , Pré-Escolar , Surdez/psicologia , Surdez/reabilitação , Feminino , Alemanha , Audição , Humanos , Aprendizagem , Masculino , Multilinguismo , Pais , Psicometria , Reprodutibilidade dos Testes
6.
J Deaf Stud Deaf Educ ; 13(1): 138-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17569751

RESUMO

Given the current lack of appropriate assessment tools for measuring deaf children's sign language skills, many test developers have used existing tests of other sign languages as templates to measure the sign language used by deaf people in their country. This article discusses factors that may influence the adaptation of assessment tests from one natural sign language to another. Two tests which have been adapted for several other sign languages are focused upon: the Test for American Sign Language and the British Sign Language Receptive Skills Test. A brief description is given of each test as well as insights from ongoing adaptations of these tests for other sign languages. The problems reported in these adaptations were found to be grounded in linguistic and cultural differences, which need to be considered for future test adaptations. Other reported shortcomings of test adaptation are related to the question of how well psychometric measures transfer from one instrument to another.


Assuntos
Cultura , Linguística , Psicometria/métodos , Língua de Sinais , Avaliação Educacional , Humanos , Idioma , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA