Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901726

RESUMO

Multipartite bacteria have one chromosome and one or more chromid. Chromids are believed to have properties that enhance genomic flexibility, making them a favored integration site for new genes. However, the mechanism by which chromosomes and chromids jointly contribute to this flexibility is not clear. To shed light on this, we analyzed the openness of chromosomes and chromids of the two bacteria, Vibrio and Pseudoalteromonas, both which belong to the Enterobacterales order of Gammaproteobacteria, and compared the genomic openness with that of monopartite genomes in the same order. We applied pangenome analysis, codon usage analysis and the HGTector software to detect horizontally transferred genes. Our findings suggest that the chromids of Vibrio and Pseudoalteromonas originated from two separate plasmid acquisition events. Bipartite genomes were found to be more open compared to monopartite. We found that the shell and cloud pangene categories drive the openness of bipartite genomes in Vibrio and Pseudoalteromonas. Based on this and our two recent studies, we propose a hypothesis that explains how chromids and the chromosome terminus region contribute to the genomic plasticity of bipartite genomes.


Assuntos
Gammaproteobacteria , Genoma Bacteriano , Plasmídeos , Bactérias/genética , Uso do Códon , Transferência Genética Horizontal
2.
Mob DNA ; 13(1): 23, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209098

RESUMO

BACKGROUND: Mobile group I introns encode homing endonucleases that confer intron mobility initiated by a double-strand break in the intron-lacking allele at the site of insertion. Nuclear ribosomal DNA of some fungi and protists contain mobile group I introns harboring His-Cys homing endonuclease genes (HEGs). An intriguing question is how protein-coding genes embedded in nuclear ribosomal DNA become expressed. To address this gap of knowledge we analyzed nuclear L2066 group I introns from myxomycetes and ascomycetes. RESULTS: A total of 34 introns were investigated, including two identified mobile-type introns in myxomycetes with HEGs oriented in sense or antisense directions. Intriguingly, both HEGs are interrupted by spliceosomal introns. The intron in Didymium squamulosum, which harbors an antisense oriented HEG, was investigated in more detail. The group I intron RNA self-splices in vitro, thus generating ligated exons and full-length intron circles. The intron HEG is expressed in vivo in Didymium cells, which involves removal of a 47-nt spliceosomal intron (I-47) and 3' polyadenylation of the mRNA. The D. squamulosum HEG (lacking the I-47 intron) was over-expressed in E. coli, and the corresponding protein was purified and shown to confer endonuclease activity. The homing endonuclease was shown to cleave an intron-lacking DNA and to produce a pentanucleotide 3' overhang at the intron insertion site. CONCLUSIONS: The L2066 family of nuclear group I introns all belong to the group IE subclass. The D. squamulosum L2066 intron contains major hallmarks of a true mobile group I intron by encoding a His-Cys homing endonuclease that generates a double-strand break at the DNA insertion site. We propose a potential model to explain how an antisense HEG becomes expressed from a nuclear ribosomal DNA locus.

3.
Genes (Basel) ; 13(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35741706

RESUMO

Group I introns are mobile genetic elements encoding self-splicing ribozymes. Group I introns in nuclear genes are restricted to ribosomal DNA of eukaryotic microorganisms. For example, the myxomycetes, which represent a distinct protist phylum with a unique life strategy, are rich in nucleolar group I introns. We analyzed and compared 75 group I introns at position 516 in the small subunit ribosomal DNA from diverse and distantly related myxomycete taxa. A consensus secondary structure revealed a conserved group IC1 ribozyme core, but with a surprising RNA sequence complexity in the peripheral regions. Five S516 group I introns possess a twintron organization, where a His-Cys homing endonuclease gene insertion was interrupted by a small spliceosomal intron. Eleven S516 introns contained direct repeat arrays with varying lengths of the repeated motif, a varying copy number, and different structural organizations. Phylogenetic analyses of S516 introns and the corresponding host genes revealed a complex inheritance pattern, with both vertical and horizontal transfers. Finally, we reconstructed the evolutionary history of S516 nucleolar group I introns from insertion of mobile-type introns at unoccupied cognate sites, through homing endonuclease gene degradation and loss, and finally to the complete loss of introns. We conclude that myxomycete S516 introns represent a family of genetic elements with surprisingly dynamic structures despite a common function in RNA self-splicing.


Assuntos
Mixomicetos , RNA Catalítico , DNA Ribossômico/genética , Endonucleases/genética , Eucariotos/genética , Íntrons/genética , Mixomicetos/genética , Mixomicetos/metabolismo , Filogenia , RNA Catalítico/genética , RNA Catalítico/metabolismo
4.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544144

RESUMO

Bacterial genomes typically consist of one large chromosome, but can also include secondary replicons. These so-called multipartite genomes are scattered on the bacterial tree of life with the majority of cases belonging to Proteobacteria. Within the class gamma-proteobacteria, multipartite genomes are restricted to the two families Vibrionaceae and Pseudoalteromonadaceae. Whereas the genome of vibrios is well studied, information on the Pseudoalteromonadaceae genome is much scarcer. We have studied Pseudoalteromonadaceae with respect to the origin of the chromid, how pangene categories are distributed, how genes are expressed relative to their genomic location, and identified chromid hallmark genes. We calculated the Pseudoalteromonadaceae pangenome based on 25 complete genomes and found that core/softcore are significantly overrepresented in late replicating sectors of the chromid, regardless of how the chromid is replicated. On the chromosome, core/softcore and shell/cloud genes are only weakly overrepresented at the chromosomal replication origin and termination sequences, respectively. Gene expression is trending downwards with increasing distance from the chromosomal oriC, whereas the chromidal expression pattern is more complex. Moreover, we identified 78 chromid hallmark genes, and BLASTp searches suggest that the majority of them were acquired from the ancestral gene pool of Alteromonadales. Finally, our data strongly suggest that the chromid originates from a plasmid that was acquired in a relatively recent event. In summary, this study extends our knowledge on multipartite genomes, and helps us understand how and why secondary replicons are acquired, why they are maintained, and how they are shaped by evolution.


Assuntos
Pseudoalteromonas , Genoma Bacteriano , Genômica , Humanos , Plasmídeos , Replicon
5.
BMC Genomics ; 21(1): 695, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023476

RESUMO

BACKGROUND: The genome of Vibrionaceae bacteria, which consists of two circular chromosomes, is replicated in a highly ordered fashion. In fast-growing bacteria, multifork replication results in higher gene copy numbers and increased expression of genes located close to the origin of replication of Chr 1 (ori1). This is believed to be a growth optimization strategy to satisfy the high demand of essential growth factors during fast growth. The relationship between ori1-proximate growth-related genes and gene expression during fast growth has been investigated by many researchers. However, it remains unclear which other gene categories that are present close to ori1 and if expression of all ori1-proximate genes is increased during fast growth, or if expression is selectively elevated for certain gene categories. RESULTS: We calculated the pangenome of all complete genomes from the Vibrionaceae family and mapped the four pangene categories, core, softcore, shell and cloud, to their chromosomal positions. This revealed that core and softcore genes were found heavily biased towards ori1, while shell genes were overrepresented at the opposite part of Chr 1 (i.e., close to ter1). RNA-seq of Aliivibrio salmonicida and Vibrio natriegens showed global gene expression patterns that consistently correlated with chromosomal distance to ori1. Despite a biased gene distribution pattern, all pangene categories contributed to a skewed expression pattern at fast-growing conditions, whereas at slow-growing conditions, softcore, shell and cloud genes were responsible for elevated expression. CONCLUSION: The pangene categories were non-randomly organized on Chr 1, with an overrepresentation of core and softcore genes around ori1, and overrepresentation of shell and cloud genes around ter1. Furthermore, we mapped our gene distribution data on to the intracellular positioning of chromatin described for V. cholerae, and found that core/softcore and shell/cloud genes appear enriched at two spatially separated intracellular regions. Based on these observations, we hypothesize that there is a link between the genomic location of genes and their cellular placement.


Assuntos
Cromossomos Bacterianos/genética , Genes Bacterianos , Vibrionaceae/genética , Mapeamento Cromossômico/métodos , Vibrionaceae/citologia
6.
Microb Cell Fact ; 18(1): 197, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711487

RESUMO

BACKGROUND: Heterologous production of cold-adapted proteins currently represents one of the greatest bottlenecks in the ongoing bioprospecting efforts to find new enzymes from low-temperature environments, such as, the polar oceans that represent essentially untapped resources in this respect. In mesophilic expression hosts such as Escherichia coli, cold-adapted enzymes often form inactive aggregates. Therefore it is necessary to develop new low-temperature expression systems, including identification of new host organisms and complementary genetic tools. Psychrophilic bacteria, including Pseudoalteromonas haloplanktis, Shewanella and Rhodococcus erythropolis have all been explored as candidates for such applications. However to date none of these have found widespread use as efficient expression systems, or are commercially available. In the present work we explored the use of the sub-Arctic bacterium Aliivibrio wodanis as a potential host for heterologous expression of cold-active enzymes. RESULTS: We tested 12 bacterial strains, as well as available vectors, promoters and reporter systems. We used RNA-sequencing to determine the most highly expressed genes and their intrinsic promoters in A. wodanis. In addition we examined a novel 5'-fusion to stimulate protein production and solubility. Finally we tested production of a set of "difficult-to-produce" enzymes originating from various bacteria and one Archaea. Our results show that cold-adapted enzymes can be produced in soluble and active form, even in cases when protein production failed in E. coli due to the formation of inclusion bodies. Moreover, we identified a 60-bp/20-aa fragment from the 5'-end of the AW0309160_00174 gene that stimulates expression of Green Fluorescent Protein and improves production of cold-active enzymes when used as a 5'-fusion. A 25-aa peptide from the same protein enhanced secretion of a 25-aa-sfGFP fusion. CONCLUSIONS: Our results indicate the use of A. wodanis and associated genetic tools for low-temperature protein production and indicate that A. wodanis represents an interesting platform for further development of a protein production system that can promote further cold-enzyme discoveries.


Assuntos
Aliivibrio/genética , Proteínas de Bactérias/síntese química , Enzimas/síntese química , Expressão Gênica , Proteínas Recombinantes/síntese química , Regiões Árticas , Biotecnologia , Temperatura Baixa , Oceanos e Mares , Temperatura
7.
Microbiome ; 7(1): 64, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995938

RESUMO

BACKGROUND: The population of Atlantic cod (Gadus morhua), also known as Northeast Arctic cod, migrating Atlantic cod, or simply "skrei," lives mainly in the Barents Sea and Svalbard waters and migrates in annual cycles to the Norwegian coast in order to spawn eggs during late winter. It is the world's largest population of Atlantic cod, and the population is distinct from the Norwegian coastal cod (or "fjord" cod). Despite the biological, economic, and cultural importance of migrating Atlantic cod, current knowledge on the associated microbiota is very limited. Using shotgun metagenomics and metaproteomics approaches, we present here the gut microbiota, metagenome-assembled genomes (MAGs) of the most abundant bacterial species, DNA-based functional profile, and the metaproteome of Atlantic cod specimens caught at a spawning area in an open ocean outside of Tromsø, Norway. RESULTS: Our analyses identified 268 bacterial families in DNA isolated from feces of 6 individual migrating Atlantic cod. The most abundant family was Vibrionaceae (52%; 83% if unclassified reads are excluded), with Photobacterium (genus) representing the vast majority. The recovery of metagenome-assembled genomes provided further details and suggests that several closely related Photobacterium strains from the Photobacterium phosphoreum clade are the most abundant. A genomic-based functional profiling showed that the most abundant functional subsystems are "Carbohydrates"; "Amino Acids and Derivatives"; "Protein Metabolism"; "Cofactors, Vitamins, Prosthetic, Groups, and Pigments"; and "DNA Metabolism," which is in agreement with other studies of gut microbiomes of marine organisms. Finally, the MS-based metaproteomic dataset revealed that the functional category "Protein Metabolism" is highly overrepresented (3×) when compared to the genome-based functional profile, which shows that ribosomal proteins are rich in the bacterial cytosol. CONCLUSION: We present here the first study of bacterial diversity of the gut of migrating Atlantic cod using shotgun sequencing and metagenome-assembled genomes (MAGs). The most abundant bacteria belong to the Photobacterium genus (Vibrionaceae family). We also constructed functional profiles of the gut microbiome. These may be used in future studies as a platform for mining of commercially interesting cold-active enzymes.


Assuntos
Migração Animal , Gadus morhua/microbiologia , Microbioma Gastrointestinal , Metagenômica , Photobacterium/classificação , Animais , DNA Bacteriano/genética , Feminino , Variação Genética , Genoma Bacteriano , Masculino , Noruega , Proteômica , Análise de Sequência de DNA
8.
Genome Biol Evol ; 10(4): 1127-1131, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635365

RESUMO

We report here the complete genome sequences of seven Vibrio anguillarum strains isolated from multiple geographic locations, thus increasing the total number of genomes of finished quality to 11. The genomes were de novo assembled from long-sequence PacBio reads. Including draft genomes, a total of 44 V. anguillarum genomes are currently available in the genome databases. They represent an important resource in the study of, for example, genetic variations and for identifying virulence determinants. In this article, we present the genomes and basic genome comparisons of the 11 complete genomes, including a BRIG analysis, and pan genome calculation. We also describe some structural features of superintegrons on chromosome 2 s, and associated insertion sequence (IS) elements, including 18 new ISs (ISVa3 - ISVa20), both of importance in the complement of V. anguillarum genomes.


Assuntos
Elementos de DNA Transponíveis/genética , Vibrio/genética , Sequenciamento Completo do Genoma , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
9.
PLoS One ; 13(2): e0191860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444108

RESUMO

Siderophores are small molecules synthesized and secreted by bacteria and fungi to scavenge iron. Extracellular ferri-siderohores are recognized by cognate receptors on the cell surface for transport over membranes. Several siderophore systems from Vibrionaceae representatives are known and well understood, e.g., the molecular structure of the siderophore, the biosynthesis gene cluster and pathway, and the gene expression pattern. Less is known about how these systems are distributed among the ~140 Vibrionaceae species, and which evolutionary processes contributed to the present-day distribution. In this work, we compiled existing knowledge on siderophore biosynthesis systems and siderophore receptors from Vibrionaceae and used phylogenetic analyses to investigate their organization, distribution, origin and evolution. Through literature searches, we identified nine different siderophore biosynthesis systems and thirteen siderophore receptors in Vibrionaceae. Homologs were identified by BLAST searches, and the results were mapped onto a Vibrionaceae phylogeny. We identified 81 biosynthetic systems distributed in 45 Vibrionaceae species and 16 unclassified Vibrionaceae strains, and 409 receptors in 89 Vibrionaceae species and 49 unclassified Vibrionaceae strains. The majority of taxa are associated with at least one type of siderophore biosynthesis system, some (e.g., aerobactin and vibrioferrin) of which are widely distributed in the family, whereas others (i.e., bisucaberin and vibriobactin) are found in one lineage. Cognate receptors are found more widespread. Phylogenetic analysis of three siderophore systems (piscibactin, vibrioferrin and aerobactin) show that their present-day distribution can be explained by an old insertion into Vibrionaceae, followed mainly by stable vertical evolution and extensive loss, and some cases of horizontal gene transfers. The present work provides an up to date overview of the distribution of siderophore-based iron acquisition systems in Vibrionaceae, and presents phylogenetic analysis of these systems. Our results suggest that the present-day distribution is a result of several evolutionary processes, such as old and new gene acquisitions, gene loss, and both vertical and horizontal gene transfers.


Assuntos
Filogenia , Sideróforos/genética , Vibrionaceae/classificação , Sistemas de Gerenciamento de Base de Dados
10.
PeerJ ; 5: e3461, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717590

RESUMO

BACKGROUND: The ferric uptake regulator (Fur) is a transcription factor and the main regulator of iron acquisition in prokaryotes. When bound to ferric iron, Fur recognizes its DNA binding site and generally executes its function by repressing transcription of its target genes. Due to its importance in virulence, the Fur regulon is well studied for several model bacteria. In our previous work, we used computational predictions and microarray to gain insights into Fur-regulation in Aliivibrio salmonicida, and have identified a number of genes and operons that appear to be under direct control of Fur. To provide a more accurate and deeper global understanding of the biological role of Fur we have now generated an A. salmonicida fur knock-out strain and used RNA-sequencing to compare gene expression between the wild-type and fur null mutant strains. RESULTS: An A. salmonicida fur null mutant strain was constructed. Biological assays demonstrate that deletion of fur results in loss of fitness, with reduced growth rates, and reduced abilities to withstand low-iron conditions, and oxidative stress. When comparing expression levels in the wild-type and the fur null mutant we retrieved 296 differentially expressed genes distributed among 18 of 21 functional classes of genes. A gene cluster encoding biosynthesis of the siderophore bisucaberin represented the highest up-regulated genes in the fur null mutant. Other highly up-regulated genes all encode proteins important for iron acquisition. Potential targets for the RyhB sRNA was predicted from the list of down-regulated genes, and significant complementarities were found between RyhB and mRNAs of the fur, sodB, cysN and VSAL_I0422 genes. Other sRNAs with potential functions in iron homeostasis were identified. CONCLUSION: The present work provides by far the most comprehensive and deepest understanding of the Fur regulon in A. salmonicida to date. Our data also contribute to a better understanding of how Fur plays a key role in iron homeostasis in bacteria in general, and help to show how Fur orchestrates iron uptake when iron levels are extremely low.

11.
RNA Biol ; 12(10): 1071-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26327359

RESUMO

The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding.


Assuntos
Metabolismo dos Carboidratos/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Mensageiro/química , RNA Mensageiro/genética , Pequeno RNA não Traduzido/química
12.
BMC Microbiol ; 15: 9, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25649684

RESUMO

BACKGROUND: Iron is an essential micronutrient for all living organisms, and virulence and sequestration of iron in pathogenic bacteria are believed to be correlated. As a defence mechanism, potential hosts therefore keep the level of free iron inside the body to a minimum. In general, iron metabolism is well studied for some bacteria (mostly human or animal pathogens). However, this area is still under-investigated for a number of important bacterial pathogens. Aliivibrio salmonicida is a fish pathogen, and previous studies of this bacterium have shown that production of siderophores is temperature regulated and dependent on low iron conditions. In this work we studied the immediate changes in transcription in response to a sudden decrease in iron levels in cultures of A. salmonicida. In addition, we compared our results to studies performed with Vibrio cholerae and Vibrio vulnificus using a pan-genomic approach. RESULTS: Microarray technology was used to monitor global changes in transcriptional levels. Cultures of A. salmonicida were grown to mid log phase before the iron chelator 2,2'-dipyridyl was added and samples were collected after 15 minutes of growth. Using our statistical cut-off values, we retrieved thirty-two differentially expressed genes where the most up-regulated genes belong to an operon encoding proteins responsible for producing the siderophore bisucaberin. A subsequent pan-transcriptome analysis revealed that nine of the up-regulated genes from our dataset were also up-regulated in datasets from similar experiments using V. cholerae and V. vulnificus, thus indicating that these genes are involved in a shared strategy to mitigate low iron conditions. CONCLUSIONS: The present work highlights the effect of iron limitation on the gene regulatory network of the fish pathogen A. salmonicida, and provides insights into common and unique strategies of Vibrionaceae species to mitigate low iron conditions.


Assuntos
Aliivibrio salmonicida/genética , Aliivibrio salmonicida/fisiologia , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Sideróforos/biossíntese , Estresse Fisiológico , Aliivibrio salmonicida/crescimento & desenvolvimento , Aliivibrio salmonicida/metabolismo , Perfilação da Expressão Gênica , Análise em Microsséries , Dados de Sequência Molecular , Análise de Sequência de DNA , Sideróforos/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
13.
BMC Genomics ; 13: 179, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22574681

RESUMO

BACKGROUND: The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. RESULTS: The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. CONCLUSION: The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the adaptation of a species to its ecological niche. Additionally, our study suggests that unique core genes can be used to aid classification of bacteria and contribute to a bacterial species definition on a genomic level. Furthermore, these genes may be of importance in clinical diagnostics and drug development.


Assuntos
Adaptação Biológica/genética , Genoma Bacteriano , Vibrionaceae/genética , Análise por Conglomerados , Bases de Dados Genéticas , Transferência Genética Horizontal , Família Multigênica , Filogenia , Software , Especificidade da Espécie , Vibrionaceae/classificação
14.
BMC Genomics ; 13: 37, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22272603

RESUMO

BACKGROUND: Spot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42. RESULTS: We generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose. CONCLUSIONS: We hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin.


Assuntos
Aliivibrio salmonicida/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , RNA/metabolismo , Aliivibrio salmonicida/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Northern Blotting , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Alinhamento de Sequência
15.
J Mol Microbiol Biotechnol ; 22(6): 352-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23295256

RESUMO

Bacterial small RNAs (sRNAs) are trans-encoded regulatory RNAs that typically bind mRNAs by short-sequence complementarities and change the expression of the corresponding proteins. Some of the well-characterized sRNAs serve critical steps in the regulation of important cellular processes, such as quorum sensing (Qrr), iron homeostasis (RyhB), oxidative stress (OxyS), and carbon metabolism (Spot 42). However, many sRNAs remain to be identified, and the functional roles of sRNAs are known for only a small fraction. For example, of the hundreds of candidate sRNAs from members of the bacterial family Vibrionaceae, the function is known for only 9. We have in this study significantly contributed to the discovery and verification of new sRNAs in a representative of Vibrionaceae, i.e. the Aliivibrio salmonicida, which causes severe disease in farmed Atlantic salmon and other fishes. A computational search for intergenic non-coding (nc) RNAs in the 4.6-Mb genome identified a total of 252 potential ncRNAs (including 233 putative sRNAs). Depending on the set threshold value for fluorescence signal in our microarray approach, we identified 50-80 putative ncRNAs, 12 of which were verified by Northern blot analysis. In total, we identified 9 new sRNAs.


Assuntos
Aliivibrio salmonicida/genética , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética , Northern Blotting , Biologia Computacional , Análise em Microsséries
16.
Mol Phylogenet Evol ; 62(1): 109-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056605

RESUMO

The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.


Assuntos
Clorófitas/genética , Enzimas de Restrição do DNA/genética , DNA Ribossômico/genética , Genes de Plantas , Íntrons , Sequência de Bases , Teorema de Bayes , Evolução Molecular , Funções Verossimilhança , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Análise de Sequência de DNA
17.
Stud Health Technol Inform ; 162: 182-203, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21685572

RESUMO

The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.


Assuntos
Modelos Biológicos , Percepção de Quorum , Comunicação Celular , Biologia Computacional , Simulação por Computador , Transdução de Sinais
18.
J Microbiol ; 48(2): 174-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20437149

RESUMO

The Ferric uptake regulator (Fur) is a global transcription factor that affects expression of bacterial genes in an iron-dependent fashion. Although the Fur protein and its iron-responsive regulon are well studied, there are still important questions that remain to be answered. For example, the consensus Fur binding site also known as the "Fur box" is under debate, and it is still unclear which Fur residues directly interact with the DNA. Our long-term goal is to dissect the biological roles of Fur in the development of the disease cold-water vibriosis, which is caused by the psychrophilic bacteria Aliivibrio salmonicida (also known as Vibrio salmonicida). Here, we have used experimental and computational methods to characterise the Fur protein from A. salmonicida (AS-Fur). Electrophoretic mobility shift assays show that AS-Fur binds to the recently proposed vibrio Fur box consensus in addition to nine promoter regions that contain Fur boxes. Binding appears to be dependent on the number of Fur boxes, and the predicted "strength" of Fur boxes. Finally, structure modeling and molecular dynamics simulations provide new insights into potential AS-Fur-DNA interactions.


Assuntos
Aliivibrio salmonicida/metabolismo , Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Aliivibrio salmonicida/genética , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética
19.
In Silico Biol ; 10(1): 27-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22430220

RESUMO

The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.


Assuntos
Simulação por Computador , Modelos Biológicos , Percepção de Quorum , Software , Algoritmos , Aliivibrio salmonicida/fisiologia , Comunicação Celular , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genes Bacterianos , Transdução de Sinais
20.
Mar Genomics ; 3(3-4): 193-200, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21798213

RESUMO

Aliivibrio salmonicida causes "cold-water vibriosis" (or "Hitra disease") in fish, including marine-reared Atlantic salmon. During development of the disease the bacterium will encounter macrophages with antibacterial activities such as production of damaging reactive oxygen species (ROS). To defend itself the bacterium will presumably start producing detoxifying enzymes, reducing agents, and proteins involved in DNA and protein repair systems. Even though responses to oxidative stress are well studied for a few model bacteria, little work has been done in general to explain how important groups of pathogens, like members of the Vibrionaceae family, can survive at high levels of ROS. We have used bioinformatic tools and microarray to study how A. salmonicida responds to hydrogen peroxide (H(2)O(2)). First, we used the recently published genome sequence to predict potential binding sites for OxyR (H(2)O(2) response regulator). The computer-based search identified OxyR sites associated with 20 single genes and 8 operons, and these predictions were compared to experimental data from Northern blot analysis and microarray analysis. In general, OxyR binding site predictions and experimental results are in agreement. Up- and down regulated genes are distributed among all functional gene categories, but a striking number of ≥2 fold up regulated genes encode proteins involved in detoxification and DNA repair, are part of reduction systems, or are involved in carbon metabolism and regeneration of NADPH. Our predictions and -omics data corroborates well with findings from other model bacteria, but also suggest species-specific gene regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...