Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2763, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179409

RESUMO

The hydrological cycle is expected to intensify in a warming climate. However, observational evidence of such changes in the Southern Ocean is difficult to obtain due to sparse measurements and a complex superposition of changes in precipitation, sea ice, and glacial meltwater. Here we disentangle these signals using a dataset of salinity and seawater oxygen isotope observations collected in the Indian sector of the Southern Ocean. Our results show that the atmospheric water cycle has intensified in this region between 1993 and 2021, increasing the salinity in subtropical surface waters by 0.06 ± 0.07 g kg-1 per decade, and decreasing the salinity in subpolar surface waters by -0.02 ± 0.01 g kg-1 per decade. The oxygen isotope data allow to discriminate the different freshwater processes showing that in the subpolar region, the freshening is largely driven by the increase in net precipitation (by a factor two) while the decrease in sea ice melt is largely balanced by the contribution of glacial meltwater at these latitudes. These changes extend the growing evidence for an acceleration of the hydrological cycle and a melting cryosphere that can be expected from global warming.

2.
Global Biogeochem Cycles ; 36(7): e2021GB007156, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248262

RESUMO

The deep ocean releases large amounts of old, pre-industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2 release is relevant to the global climate because its changes could alter atmospheric CO2 levels on long time scales, and also affects the present-day potential of the Southern Ocean to take up anthropogenic CO2. Here, year-round profiling float measurements show that this CO2 release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea-ice edge. This band of high CO2 subsurface water coincides with the outcropping of the 27.8 kg m-3 isoneutral density surface that characterizes Indo-Pacific Deep Water (IPDW). It has a potential partial pressure of CO2 exceeding current atmospheric CO2 levels (∆PCO2) by 175 ± 32 µatm. Ship-based measurements reveal that IPDW exhibits a distinct ∆PCO2 maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2 decreases. Most of this vertical ∆PCO2 decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2 outgassing from the high-carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2 fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.

4.
Sci Rep ; 11(1): 6760, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762612

RESUMO

The Atlantic sector of the Southern Ocean is the world's main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses-ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4-9.7 Sv) yielding larger rates than tracer-based estimates (3.7-4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m[Formula: see text] [Formula: see text] is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.

5.
Science ; 363(6431): 1080-1084, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846597

RESUMO

From 1.25 million to 700,000 years ago, the ice age cycle deepened and lengthened from 41,000- to 100,000-year periodicity, a transition that remains unexplained. Using surface- and bottom-dwelling foraminifera from the Antarctic Zone of the Southern Ocean to reconstruct the deep-to-surface supply of water during the ice ages of the past 1.5 million years, we found that a reduction in deep water supply and a concomitant freshening of the surface ocean coincided with the emergence of the high-amplitude 100,000-year glacial cycle. We propose that this slowing of deep-to-surface circulation (i.e., a longer residence time for Antarctic surface waters) prolonged ice ages by allowing the Antarctic halocline to strengthen, which increased the resistance of the Antarctic upper water column to orbitally paced drivers of carbon dioxide release.

6.
Nature ; 537(7618): 89-92, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582222

RESUMO

Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.


Assuntos
Água Doce/análise , Camada de Gelo/química , Salinidade , Água do Mar/análise , Água do Mar/química , Movimentos da Água , Regiões Antárticas , Atmosfera/química , Mudança Climática/estatística & dados numéricos , Congelamento , História do Século XX , História do Século XXI , Oceanos e Mares , Temperatura , Incerteza , Vento
7.
Science ; 349(6253): 1221-4, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26359401

RESUMO

Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.


Assuntos
Dióxido de Carbono/química , Sequestro de Carbono , Oceanos e Mares , Água do Mar/química , Regiões Antárticas , Atmosfera/química , Simulação por Computador , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA