Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112115

RESUMO

The two-step batch foaming process of solid-state assisted by supercritical CO2 is a versatile technique for the foaming of polymers. In this work, it was assisted by an out-of-autoclave technology: either using lasers or ultrasound (US). Laser-aided foaming was only tested in the preliminary experiments; most of the work involved US. Foaming was carried out on bulk thick samples (PMMA). The effect of ultrasound on the cellular morphology was a function of the foaming temperature. Thanks to US, cell size was slightly decreased, cell density was increased, and interestingly, thermal conductivity was shown to decrease. The effect on the porosity was more remarkable at high temperatures. Both techniques provided micro porosity. This first investigation of these two potential methods for the assistance of supercritical CO2 batch foaming opens the door to new investigations. The different properties of the ultrasound method and its effects will be studied in an upcoming publication.

2.
Molecules ; 25(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202668

RESUMO

Organic polymers can be made porous via continuous or discontinuous expansion processes in scCO2. The resulting foams properties are controlled by the interplay of three groups of parameters: (i) Chemical, (ii) physico-chemical, and (iii) technological/process that are explained in this paper. The advantages and drawbacks of continuous (extrusion, injection foaming) or discontinuous (batch foaming) foaming processes in scCO2, will be discussed in this article; especially for micro or nano cellular polymers. Indeed, a challenge is to reduce both specific mass (e.g., ρ < 100 kg·m-3) and cell size (e.g., average pore diameter ϕaveragepores < 100 nm). Then a particular system where small "objects" (coreshells CS, block copolymer MAM) are perfectly dispersed at a micrometric to nanometric scale in poly(methyl methacrylate) (PMMA) will be presented. Such "additives", considered as foaming aids, are aimed at "regulating" the foaming and lowering the pore size and/or density of PMMA based foams. Differences between these additives will be shown. Finally, in a PMMA/20 wt% MAM blend, via a quasi one-step batch foaming, a "porous to nonporous" transition is observed in thick samples. A lower limit of pore size (around 50 nm) seems to arise.


Assuntos
Dióxido de Carbono/química , Nanopartículas/química , Polímeros/química , Polimetil Metacrilato/química , Porosidade , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA