Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 18(1): 106, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986642

RESUMO

BACKGROUND: Species with a restricted geographic distribution, and highly specialized habitat and dietary requirements, are particularly vulnerable to extinction. The Bale monkey (Chlorocebus djamdjamensis) is a little-known arboreal, bamboo-specialist primate endemic to the southern Ethiopian Highlands. While most Bale monkeys inhabit montane forests dominated by bamboo, some occupy forest fragments where bamboo is much less abundant. We used mitochondrial DNA (mtDNA) sequences to analyse the genetic structure and evolutionary history of Bale monkeys covering the majority of their remaining distribution range. We analysed 119 faecal samples from their two main habitats, continuous forest (CF) and fragmented forests (FF), and sequenced 735 bp of the hypervariable region I (HVI) of the control region. We added 12 orthologous sequences from congeneric vervets (C. pygerythrus) and grivets (C. aethiops) as well as animals identified as hybrids, previously collected in southern Ethiopia. RESULTS: We found strong genetic differentiation (with no shared mtDNA haplotypes) between Bale monkey populations from CF and FF. Phylogenetic analyses revealed two distinct and highly diverged clades: a Bale monkey clade containing only Bale monkeys from CF and a green monkey clade where Bale monkeys from FF cluster with grivets and vervets. Analyses of demographic history revealed that Bale monkey populations (CF and FF) have had stable population sizes over an extended period, but have all recently experienced population declines. CONCLUSIONS: The pronounced genetic structure and deep mtDNA divergence between Bale monkey populations inhabiting CF and FF are likely to be the results of hybridization and introgression of the FF population with parapatric Chlorocebus species, in contrast to the CF population, which was most likely not impacted by hybridization. Hybridization in the FF population was probably enhanced by an alteration of the bamboo forest habitat towards a more open woodland habitat, which enabled the parapatric Chlorocebus species to invade the Bale monkey's range and introgress the FF population. We therefore propose that the CF and FF Bale monkey populations should be managed as separate units when developing conservation strategies for this threatened species.


Assuntos
Evolução Biológica , Cercopithecus/genética , Ecossistema , Genética Populacional , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Demografia , Etiópia , Variação Genética , Geografia , Haplótipos/genética , Filogenia , Densidade Demográfica , Fatores de Tempo
2.
Trends Genet ; 30(11): 482-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954183

RESUMO

The success of personalized medicine rests on understanding the genetic variation between individuals. Thus, as medical practice evolves and variation among individuals becomes a fundamental aspect of clinical medicine, a thorough consideration of the genetic and genomic information concerning the animals used as models in biomedical research also becomes critical. In particular, nonhuman primates (NHPs) offer great promise as models for many aspects of human health and disease. These are outbred species exhibiting substantial levels of genetic variation; however, understanding of the contribution of this variation to phenotypes is lagging behind in NHP species. Thus, there is a pivotal need to address this gap and define strategies for characterizing both genomic content and variability within primate models of human disease. Here, we discuss the current state of genomics of NHP models and offer guidelines for future work to ensure continued improvement and utility of this line of biomedical research.


Assuntos
Pesquisa Biomédica/métodos , Modelos Animais de Doenças , Variação Genética , Genômica/métodos , Animais , Pesquisa Biomédica/tendências , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/tendências , Genômica/tendências , Humanos , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Primatas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/tendências
3.
Int J Primatol ; 34: 986-999, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098065

RESUMO

Introgressive hybridization may cause substantial discordances among phylogenies based on different genetic markers. Such discordances have been found in diverse mammal species including primates. A recent study of mitochondrial DNA (mtDNA) revealed several poly- and paraphyletic relationships in African green monkeys (Chlorocebus), suggesting contemporary and/or ancient introgressive hybridization among almost all parapatric species of the genus. However, mtDNA analyses alone do not allow us to draw conclusions concerning introgression events. In this study we analyzed two Y chromosomal (Y-chr) markers for 30 African green monkey samples and compared the resulting genetic relationships to those based on published mtDNA data. In line with the results for mtDNA, we found no Y-chr evidence of hypothesized hybridization among Chlorocebus sabaeus and C. tantalus in the northern part of the contact zone in West Africa, and we found two distinct and distantly related Y-chr haplotypes within the range of C. tantalus, suggesting possible cryptic genetic diversity rather than ancient introgressive hybridization in this species. In contrast, Y-chr data revealed monophyletic relationships within Chlorocebus pygerythrus from East Africa, suggesting that mtDNA paraphylies found in this species are most likely to be the result of ancient introgressive hybridization and subsequent cytonuclear extinction of an earlier taxon. Our results accentuate the importance of analyzing sex chromosomal data in addition to mtDNA to obtain more information on the potential outcomes of hybridization with respect to genetic and species diversity. Analysis of more diverse nuclear marker sets is needed to obtain a more complete picture of the African green monkey evolution.

4.
Am J Primatol ; 75(4): 350-60, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23307319

RESUMO

African green monkeys (Chlorocebus) represent a widely distributed and morphologically diverse primate genus in sub-Saharan Africa. Little attention has been paid to their genetic diversity and phylogeny. Based on morphological data, six species are currently recognized, but their taxonomy remains disputed. Here, we aim to characterize the mitochondrial (mt) DNA diversity, biogeography and phylogeny of African green monkeys. We analyzed the complete mitochondrial cytochrome b gene of 126 samples using feces from wild individuals and material from zoo and museum specimens with clear geographical provenance, including several type specimens. We found evidence for nine major mtDNA clades that reflect geographic distributions rather than taxa, implying that the mtDNA diversity of African green monkeys does not conform to existing taxonomic classifications. Phylogenetic relationships among clades could not be resolved suggesting a rapid early divergence of lineages. Several discordances between mtDNA and phenotype indicate that hybridization may have occurred in contact zones among species, including the threatened Bale monkey (Chlorocebus djamdjamensis). Our results provide both valuable data on African green monkeys' genetic diversity and evolution and a basis for further molecular studies on this genus.


Assuntos
Chlorocebus aethiops/classificação , Chlorocebus aethiops/genética , DNA Mitocondrial/genética , Variação Genética/genética , África Subsaariana , Animais , Citocromos b/genética , DNA/análise , Demografia , Hibridização Genética/genética , Filogenia , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...