Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nature ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137897

RESUMO

In systemic lupus erythematosus (SLE) loss of immune tolerance, autoantibody production and immune complex deposition are required but not sufficient for organ damage1. How inflammatory signals are initiated and amplified in the setting of autoimmunity remains elusive. Here, we set out to dissect layers and hierarchies of autoimmune kidney inflammation in order to identify tissue-specific cellular hubs that amplify auto-inflammatory responses. Using high-resolution single-cell profiling of kidney immune and parenchymal cells, in combination with antibody blocking and genetic deficiency, we show that tissue-resident NKp46+ innate lymphoid cells (ILC) are crucial signal amplifiers of disease-associated macrophage expansion and epithelial cell injury in lupus nephritis, downstream of autoantibody production. NKp46 signaling in a distinct subset of ILC1 instructed an unconventional immune-regulatory transcriptional program, which included the expression of the myeloid cell growth factor CSF2. CSF2 production by NKp46+ ILC promoted the population expansion of monocyte-derived macrophages. Blockade of the NKp46 receptor (using the antibody mNCR1.152) or genetic deficiency of NKp46 abrogated epithelial cell injury. The same cellular and molecular patterns were operative in human lupus nephritis. Our data support that NKp46+ ILC1 promote parenchymal cell injury by granting monocyte-derived macrophages access to epithelial cell niches. NKp46 activation in ILC1 thus constitutes a previously unrecognized, critical tissue rheostat that amplifies organ damage in autoimmune hosts, with broad implications for inflammatory pathologies and therapies.

2.
J Immunol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072698

RESUMO

Chronic inflammasome activation in mononuclear phagocytes (MNPs) promotes fibrosis in various tissues, including the kidney. The cellular and molecular links between the inflammasome and fibrosis are unclear. To address this question, we fed mice lacking various immunological mediators an adenine-enriched diet, which causes crystal precipitation in renal tubules, crystal-induced inflammasome activation, and renal fibrosis. We found that kidney fibrosis depended on an intrarenal inflammasome-dependent type 3 immune response driven by its signature transcription factor Rorc (retinoic acid receptor-related orphan receptor C gene), which was partially carried out by type 3 innate lymphoid cells (ILC3s). The role of ILCs in the kidney is less well known than in other organs, especially that of ILC3. In this article, we describe that depletion of ILCs or genetic deficiency for Rorc attenuated kidney inflammation and fibrosis. Among the inflammasome-derived cytokines, only IL-1ß expanded ILC3 and promoted fibrosis, whereas IL-18 caused differentiation of NKp46+ ILC3. Deficiency of the type 3 maintenance cytokine, IL-23, was more protective than IL-1ß inhibition, which may be explained by the downregulation of the IL-1R, but not of the IL-23R, by ILC3 early in the disease, allowing persistent sensing of IL-23. Mechanistically, ILC3s colocalized with renal MNPs in vivo as shown by multiepitope-ligand cartography. Cell culture experiments indicated that renal ILC3s caused renal MNPs to increase TGF-ß production that stimulated fibroblasts to produce collagen. We conclude that ILC3s link inflammasome activation with kidney inflammation and fibrosis and are regulated by IL-1ß and IL-23.

3.
Mol Metab ; 87: 101981, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971403

RESUMO

OBJECTIVE: The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS: The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS: OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS: Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.


Assuntos
Linfócitos B , Flavina-Adenina Dinucleotídeo , Citometria de Fluxo , NAD , Análise de Célula Única , Humanos , Citometria de Fluxo/métodos , NAD/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Análise de Célula Única/métodos , Linfócitos B/metabolismo , Mitocôndrias/metabolismo , Linfócitos T/metabolismo , Oxirredução , Fluorescência , Artrite Reumatoide/metabolismo , Glicólise , Fosforilação Oxidativa , Feminino , Masculino , Glucose/metabolismo
4.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
5.
Nat Commun ; 15(1): 1764, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409121

RESUMO

Analyzing immune cell interactions in the bone marrow is vital for understanding hematopoiesis and bone homeostasis. Three-dimensional analysis of the complete, intact bone marrow within the cortex of whole long bones remains a challenge, especially at subcellular resolution. We present a method that stabilizes the marrow and provides subcellular resolution of fluorescent signals throughout the murine femur, enabling identification and spatial characterization of hematopoietic and stromal cell subsets. By combining a pre-processing algorithm for stripe artifact removal with a machine-learning approach, we demonstrate reliable cell segmentation down to the deepest bone marrow regions. This reveals age-related changes in the marrow. It highlights the interaction between CX3CR1+ cells and the vascular system in homeostasis, in contrast to other myeloid cell types, and reveals their spatial characteristics after injury. The broad applicability of this method will contribute to a better understanding of bone marrow biology.


Assuntos
Células da Medula Óssea , Medula Óssea , Camundongos , Animais , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas , Hematopoese , Células Estromais
6.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366144

RESUMO

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Proteômica , Tronco Encefálico , Cerebelo , Perfilação da Expressão Gênica
7.
Semin Arthritis Rheum ; 64S: 152319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040516

RESUMO

Immune cells perform their tasks in tissues, thus, they are highly dependent on their microenvironment. This means that the tissue context should be considered to fully understand their function. For a long time, it has been difficult to quantify these complex interrelationships in tissues and to spatially map the diversity of cell types involved. In recent years, several methods have become available that allow comprehensive profiling of immune cells and their microenvironment, at both the protein and transcriptional levels. We have used multiplex immunofluorescence histology in combination with machine-learning based cell segmentation and annotation to identify even rare immune cell populations, namely innate lymphoid cells, in various human tissues and found that they preferentially localize in fibrovascular niches. Those niches are located around blood vessels, enriched in stromal cells and extracellular matrix, and represent a location for innate lymphoid cells across various organs. By combining multiplexed histology and spatial transcriptomics on serial sections, we further identified those tissue areas as seed points for COVID-19 induced lung fibrosis and pin-pointed a pro-fibrotic macrophage population as driver of this process, leading to an expansion of the niches. At later disease stages, these areas were populated by lymphocytes, promoting the formation of tertiary lymphoid structures. Whether similar mechanisms apply to other diseases associated with fibrosis, such as autoimmune conditions, awaits further investigation.


Assuntos
Linfócitos , Fibrose Pulmonar , Humanos , Imunidade Inata , Fibrose
8.
Eur J Immunol ; 54(2): e2350484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985207

RESUMO

Spatial organization plays a fundamental role in biology, influencing the function of biological structures at various levels. The immune system, in particular, relies on the orchestrated interactions of immune cells with their microenvironment to mount protective or pathogenic immune responses. The COVID-19 pandemic has underscored the significance of studying immunity within target organs to understand disease progression and severity. To achieve this, multiplex histology and spatial transcriptomics have proven indispensable in providing a spatial context to protein and gene expression patterns. By combining these techniques, researchers gain a more comprehensive understanding of the complex interactions at the cellular and molecular level in distinct tissue niches, key functional units modulating health and disease. In this review, we discuss recent advances in spatial tissue profiling techniques, highlighting their advantages over traditional histopathology studies. The insights gained from these approaches have the potential to revolutionize the diagnosis and treatment of various diseases including cancer, autoimmune disorders, and infectious diseases. However, we also acknowledge their challenges and limitations. Despite these, spatial tissue profiling offers promising opportunities to improve our understanding of how tissue niches direct regional immunity, and their relevance in tissue immunopathology, as a basis for novel therapeutic strategies and personalized medicine.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Pandemias , Progressão da Doença , Perfilação da Expressão Gênica
9.
Cell ; 186(23): 5084-5097.e18, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37918394

RESUMO

Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases.


Assuntos
Autoanticorpos , Encefalite , Linfócitos T , Animais , Humanos , Camundongos , Autoanticorpos/metabolismo , Encefalite/metabolismo , Encefalite/terapia , Receptores de N-Metil-D-Aspartato , Doenças Autoimunes , Modelos Animais de Doenças
10.
J Vis Exp ; (199)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677040

RESUMO

Parasites generally have a negative effect on the health of their host. They represent a huge health burden, as they globally affect the health of the infested human or animal in the long term and, thus, impact agricultural and socio-economic outcomes. However, parasite-driven immune-regulatory effects have been described, with potential therapeutic relevance for autoimmune diseases. While the metabolism in both the host and parasites contributes to their defense and is the basis for nematode survival in the intestine, it has remained largely understudied due to a lack of adequate technologies. We have developed and applied NAD(P)H fluorescence lifetime imaging to explanted murine intestinal tissue during infection with the natural nematode Heligmosomoides polygyrus to study the metabolic processes in both the host and parasites in a spatially resolved manner. The exploitation of the fluorescence lifetime of the co-enzymes nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), hereafter NAD(P)H, which are preserved across species, depends on their binding status and the binding site on the enzymes catalyzing metabolic processes. Focusing on the most abundantly expressed NAD(P)H-dependent enzymes, the metabolic pathways associated with anaerobic glycolysis, oxidative phosphorylation/aerobic glycolysis, and NOX-based oxidative burst, as a major defense mechanism, were distinguished, and the metabolic crosstalk between the host and parasite during infection was characterized.


Assuntos
Infecções por Nematoides , Parasitos , Humanos , Animais , Camundongos , NAD , Fosforilação Oxidativa , Intestinos/diagnóstico por imagem
12.
Methods Mol Biol ; 2654: 91-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106177

RESUMO

Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.


Assuntos
Cálcio , NAD , NAD/metabolismo , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Centro Germinativo , Receptores de Antígenos de Linfócitos B/metabolismo
13.
Nat Commun ; 14(1): 791, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774347

RESUMO

Prolonged lung pathology has been associated with COVID-19, yet the cellular and molecular mechanisms behind this chronic inflammatory disease are poorly understood. In this study, we combine advanced imaging and spatial transcriptomics to shed light on the local immune response in severe COVID-19. We show that activated adventitial niches are crucial microenvironments contributing to the orchestration of prolonged lung immunopathology. Up-regulation of the chemokines CCL21 and CCL18 associates to endothelial-to-mesenchymal transition and tissue fibrosis within these niches. CCL21 over-expression additionally links to the local accumulation of T cells expressing the cognate receptor CCR7. These T cells are imprinted with an exhausted phenotype and form lymphoid aggregates that can organize in ectopic lymphoid structures. Our work proposes immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and perpetuates tissue remodeling.


Assuntos
COVID-19 , Quimiocina CCL21 , Quimiocinas CC , Humanos , COVID-19/imunologia , Fibrose , Pulmão , Linfócitos T/imunologia
14.
J Clin Immunol ; 43(2): 371-390, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36282455

RESUMO

PURPOSE: About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS: Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS: VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS: Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.


Assuntos
Infecções por Caliciviridae , Imunodeficiência de Variável Comum , Norovirus , Humanos , Atrofia/complicações , Atrofia/patologia , Infecções por Caliciviridae/imunologia , Linfócitos T CD8-Positivos , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/imunologia , Imunoglobulina A , Inflamação/complicações , Interferons , Norovirus/fisiologia
15.
Cells ; 13(1)2023 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-38201244

RESUMO

BACKGROUND: The healing of a bone injury is a highly complex process involving a multitude of different tissue and cell types, including immune cells, which play a major role in the initiation and progression of bone regeneration. METHODS: We histologically analyzed the spatio-temporal occurrence of cells of the innate immune system (macrophages), the adaptive immune system (B and T lymphocytes), and bone cells (osteoblasts and osteoclasts) in the fracture area of a femoral osteotomy over the healing time. This study was performed in a bone osteotomy gap mouse model. We also investigated two key challenges of successful bone regeneration: hypoxia and revascularization. RESULTS: Macrophages were present in and around the fracture gap throughout the entire healing period. The switch from initially pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype coincided with the revascularization as well as the appearance of osteoblasts in the fracture area. This indicates that M2 macrophages are necessary for the restoration of vessels and that they also play an orchestrating role in osteoblastogenesis during bone healing. The presence of adaptive immune cells throughout the healing process emphasizes their essential role for regenerative processes that exceeds a mere pathogen defense. B and T cells co-localize consistently with bone cells throughout the healing process, consolidating their crucial role in guiding bone formation. These histological data provide, for the first time, comprehensive information about the complex interrelationships of the cellular network during the entire bone healing process in one standardized set up. With this, an overall picture of the spatio-temporal interplay of cellular key players in a bone healing scenario has been created. CONCLUSIONS: A spatio-temporal distribution of immune cells, bone cells, and factors driving bone healing at time points that are decisive for this process-especially during the initial steps of inflammation and revascularization, as well as the soft and hard callus phases-has been visualized. The results show that the bone healing cascade does not consist of five distinct, consecutive phases but is a rather complex interrelated and continuous process of events, especially at the onset of healing.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Camundongos , Osteócitos , Osteoblastos , Regeneração Óssea
16.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362194

RESUMO

Two-photon excitation fluorescence laser-scanning microscopy is the preferred method for studying dynamic processes in living organ models or even in living organisms. Thanks to near-infrared and infrared excitation, it is possible to penetrate deep into the tissue, reaching areas of interest relevant to life sciences and biomedicine. In those imaging experiments, two-photon excitation spectra are needed to select the optimal laser wavelength to excite as many fluorophores as possible simultaneously in the sample under consideration. The more fluorophores that can be excited, and the more cell populations that can be studied, the better access to their arrangement and interaction can be reached in complex systems such as immunological organs. However, for many fluorophores, the two-photon excitation properties are poorly predicted from the single-photon spectra and are not yet available, in the literature or databases. Here, we present the broad excitation range (760 nm to 1300 nm) of photon-flux-normalized two-photon spectra of several fluorescent proteins in their cellular environment. This includes the following fluorescent proteins spanning from the cyan to the infrared part of the spectrum: mCerulean3, mTurquoise2, mT-Sapphire, Clover, mKusabiraOrange2, mOrange2, LSS-mOrange, mRuby2, mBeRFP, mCardinal, iRFP670, NirFP, and iRFP720.


Assuntos
Corantes Fluorescentes , Fótons , Microscopia de Fluorescência/métodos , Lasers , Óxido de Alumínio
17.
Oxid Med Cell Longev ; 2022: 6125711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663200

RESUMO

In neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, mitochondrial damage caused by oxidative stress is believed to contribute to neuroaxonal damage. Previously, we demonstrated that exposure to hydrogen peroxide (H2O2) alters mitochondrial morphology and motility in myelinated axons and that these changes initiate at the nodes of Ranvier, where numerous sodium channels are located. Therefore, we suggested that mitochondrial damage may lead to ATP deficit, thereby affecting the efficiency of the sodium-potassium ATPase and eventually leading to sodium overload in axons. The increased intra-axonal sodium may revert the axonal sodium-calcium exchangers and thus may lead to a pathological calcium overload in the axoplasm and mitochondria. Here, we used the explanted murine ventral spinal roots to investigate whether modulation of sodium or calcium influx may prevent mitochondrial alterations in myelinated axons during exogenous application of H2O2 inducing oxidative stress. For that, tetrodotoxin, an inhibitor of voltage-gated sodium ion channels, and ruthenium 360, an inhibitor of the mitochondrial calcium uniporter, were applied simultaneously with hydrogen peroxide to axons. Mitochondrial shape and motility were analyzed. We showed that inhibition of axonal sodium influx prevented oxidative stress-induced morphological changes (i.e., increase in circularity and area and decrease in length) and preserved mitochondrial membrane potential, which is crucial for ATP production. Blocking mitochondrial calcium uptake prevented decrease in mitochondrial motility and also preserved membrane potential. Our findings indicate that alterations of both mitochondrial morphology and motility in the contexts of oxidative stress can be counterbalanced by modulating intramitochondrial ion concentrations pharmacologically. Moreover, motile mitochondria show preserved membrane potentials, pointing to a close association between mitochondrial motility and functionality.


Assuntos
Cálcio , Peróxido de Hidrogênio , Trifosfato de Adenosina/metabolismo , Animais , Axônios/fisiologia , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Sódio/metabolismo
18.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728978

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.


Assuntos
COVID-19 , Influenza Humana , Adulto , Humanos , Enzima de Conversão de Angiotensina 2 , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Tropismo Viral
19.
Cancers (Basel) ; 14(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35681790

RESUMO

Detection of circulating tumor cells (CTCs) has been established as an independent prognostic marker in solid cancer. Multiparametric phenotyping of CTCs could expand the area of application for this liquid biomarker. We evaluated the Amnis® brand ImageStream®X MkII (ISX) (Luminex, Austin, TX, USA) imaging flow cytometer for its suitability for protein expression analysis and monitoring of treatment effects in CTCs. This was carried out using blood samples from patients with head and neck squamous cell carcinoma (n = 16) and breast cancer (n = 8). A protocol for negative enrichment and staining of CTCs was established, allowing quantitative analysis of the therapeutic targets PD-L1 and phosphorylated EGFR (phospho-EGFR), and the treatment response marker γH2AX as an indicator of radiation-induced DNA damage. Spiking experiments revealed a sensitivity of 73% and a specificity of 100% at a cut-off value of ≥3 CTCs, and thus confirmed the suitability of the ISX-based protocol to detect phospho-EGFR and γH2AX foci in CTCs. Analysis of PD-L1/-L2 in both spiked and patient blood samples further showed that assessment of heterogeneity in protein expression within the CTC population was possible. Further validation of the diagnostic potential of this ISX protocol for multiparametric CTC analysis in larger clinical cohorts is warranted.

20.
Sci Rep ; 12(1): 7264, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508502

RESUMO

Infections with intestinal nematodes have an equivocal impact: they represent a burden for human health and animal husbandry, but, at the same time, may ameliorate auto-immune diseases due to the immunomodulatory effect of the parasites. Thus, it is key to understand how intestinal nematodes arrive and persist in their luminal niche and interact with the host over long periods of time. One basic mechanism governing parasite and host cellular and tissue functions, metabolism, has largely been neglected in the study of intestinal nematode infections. Here we use NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate) fluorescence lifetime imaging of explanted murine duodenum infected with the natural nematode Heligmosomoides polygyrus and define the link between general metabolic activity and possible metabolic pathways in parasite and host tissue, during acute infection. In both healthy and infected host intestine, energy is effectively produced, mainly via metabolic pathways resembling oxidative phosphorylation/aerobic glycolysis features. In contrast, the nematodes shift their energy production from balanced fast anaerobic glycolysis-like and effective oxidative phosphorylation-like metabolic pathways, towards mainly anaerobic glycolysis-like pathways, back to oxidative phosphorylation/aerobic glycolysis-like pathways during their different life cycle phases in the submucosa versus the intestinal lumen. Additionally, we found an increased NADPH oxidase (NOX) enzymes-dependent oxidative burst in infected intestinal host tissue as compared to healthy tissue, which was mirrored by a similar defense reaction in the parasites. We expect that, the here presented application of NAD(P)H-FLIM in live tissues constitutes a unique tool to study possible shifts between metabolic pathways in host-parasite crosstalk, in various parasitic intestinal infections.


Assuntos
Nematospiroides dubius , Parasitos , Animais , Camundongos , NAD/metabolismo , NADP/metabolismo , Imagem Óptica , Parasitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA