Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 5: 180201, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277481

RESUMO

Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100 000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot. In addition to the raw data, a selection of high-quality pre-processed diffraction patterns and a reference SAXS profile are provided.


Assuntos
Phycodnaviridae , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Opt Express ; 21(10): 12385-94, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736456

RESUMO

Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.


Assuntos
Aerossóis/análise , Aerossóis/química , Lasers , Fotometria/métodos , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Raios X , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Microesferas
3.
Opt Express ; 21(23): 28729-42, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514385

RESUMO

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...