Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Neurol Sci ; 461: 123053, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38759249

RESUMO

Friedreich ataxia is a progressive autosomal recessive neurodegenerative disorder characterized by ataxia, dyscoordination, and cardiomyopathy. A subset of patients with Friedreich ataxia have elevated levels of serum cardiac troponin I, but associations with disease outcomes and features of cardiomyopathy remain unclear. In this study, we characterized clinically obtained serum cardiac biomarker levels including troponin I, troponin T, and B-type natriuretic peptide in subjects with Friedreich ataxia and evaluated their association with markers of disease. While unprovoked troponin I levels were elevated in 36% of the cohort, cTnI levels associated with a cardiac event (provoked) were higher than unprovoked levels. In multivariate linear regression models, younger age predicted increased troponin I values, and in logistic regression models younger age, female sex, and marginally longer GAA repeat length predicted abnormal troponin I levels. In subjects with multiple assessments, mean unprovoked troponin I levels decreased slightly over time. The presence of abnormal troponin I values and their levels were predicted by echocardiographic measures of hypertrophy. In addition, troponin I levels predicted long-term markers of clinical cardiac dysfunction over time to a modest degree. Consequently, troponin I values provide a marker of hypertrophy but only a minimally predictive biomarker for later cardiac manifestations of disease such as systolic dysfunction or arrhythmia.

2.
J Lipid Res ; 63(9): 100255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850241

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and ß-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.


Assuntos
Ataxia de Friedreich , Ácido 3-Hidroxibutírico , Adenina/metabolismo , Carnitina/metabolismo , Ceramidas/metabolismo , Coenzima A/metabolismo , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Guanina/metabolismo , Humanos , Ferro/metabolismo , Fosfatidilgliceróis , Enxofre/metabolismo , Triglicerídeos/metabolismo
3.
Front Neurosci ; 16: 874768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573317

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive disease caused by an intronic guanine-adenine-adenine (GAA) triplet expansion in the frataxin (FXN) gene, which leads to reduced expression of full-length frataxin (1-210) also known as isoform 1. Full-length frataxin has a mitochondrial targeting sequence, which facilitates its translocation into mitochondria where it is processed through cleavage at G41-L42 and K80-S81 by mitochondrial processing (MPP) to release mitochondrial mature frataxin (81-210). Alternative splicing of FXN also leads to expression of N-terminally acetylated extra-mitochondrial frataxin (76-210) named isoform E because it was discovered in erythrocytes. Frataxin isoforms are undetectable in serum or plasma, and originally whole blood could not be used as a biomarker in brief therapeutic trials because it is present in erythrocytes, which have a half-life of 115-days and so frataxin levels would remain unaltered. Therefore, an assay was developed for analyzing frataxin in platelets, which have a half-life of only 10-days. However, our discovery that isoform E is only present in erythrocytes, whereas, mature frataxin is present primarily in short-lived peripheral blood mononuclear cells (PBMCs), granulocytes, and platelets, meant that both proteins could be quantified in whole blood samples. We now report a quantitative assay for frataxin proteoforms in whole blood from healthy controls and FRDA patients. The assay is based on stable isotope dilution coupled with immunoprecipitation (IP) and two-dimensional-nano-ultrahigh performance liquid chromatography/parallel reaction monitoring/high resolution mass spectrometry (2D-nano-UHPLC-PRM/HRMS). The lower limit of quantification was 0.5 ng/mL for each proteoform and the assays had 100% sensitivity and specificity for discriminating between healthy controls (n = 11) and FRDA cases (N = 100 in year-1, N = 22 in year-2,3). The mean levels of mature frataxin in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 7.5 ± 1.5 ng/mL and 2.1 ± 1.2 ng/mL, respectively. The mean levels of isoform E in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 26.8 ± 4.1 ng/mL and 4.7 ± 3.3 ng/mL, respectively. The mean levels of total frataxin in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 34.2 ± 4.3 ng/mL and 6.8 ± 4.0 ng/mL, respectively. The assay will make it possible to rigorously monitor the natural history of the disease and explore the potential role of isoform E in etiology of the disease. It will also facilitate the assessment of therapeutic interventions (including gene therapy approaches) that attempt to increase frataxin protein expression as a treatment for this devastating disease.

4.
PLoS One ; 17(5): e0268432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584141

RESUMO

INTRODUCTION: During COVID-19 pandemic, Internal Medicine Units (IMUs) accounted for about 70% of patients hospitalized. Although a large body of data has been published regarding the so-called first wave of the pandemic, little is known about the characteristics and predictors of worse outcomes of patients managed in IMUs during the second wave. METHODS: We prospectively assessed demographics, comorbidities, treatment and outcomes, including ventilation support (VS) and death, in patients admitted to our IMU for SARS-CoV-2 between October 13th, 2020 and January 21st, 2021. Clinical evolution and biochemical testing 1, 7 and 14 days after COVID-19 diagnosis were recorded. RESULTS: We studied 120 patients (M/F 56/64, age 71±14.5 years) admitted to our IMU. Most of them had at least one comorbidity (80%). Patients who died were older, more frequently underweight, affected by malignant neoplasms and on statin therapy compared to patients eventually discharged. Both worse outcome groups (VS and death) presented higher neutrophils, ferritin, IL-6 and lower total proteins levels than controls. Age was significantly associated with mortality but not with VS need. The multivariate analysis showed age and gender independent association of mortality with underweight, malignancy and antibiotics use at the admission. With regard to biochemical parameters, both unfavourable outcomes were positively associated with high WBC count, neutrophils, blood urea nitrogen and low serum total proteins. CONCLUSIONS: Our study identified inflammation, underweight, malignancy and a marked catabolic state as the main predictors for worse outcomes in COVID-19 patients admitted to IMU during the so-called second wave of the pandemic.


Assuntos
COVID-19 , Neoplasias , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Teste para COVID-19 , Comorbidade , Hospitalização , Humanos , Inflamação , Pessoa de Meia-Idade , Neoplasias/complicações , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Magreza
5.
Mol Cell Proteomics ; 20: 100094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33991687

RESUMO

Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.


Assuntos
Cardiomiopatias/metabolismo , Ataxia de Friedreich/metabolismo , Retinoides/metabolismo , Adolescente , Adulto , Idoso , Aldeído Oxirredutases/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteômica , Adulto Jovem , Frataxina
6.
Hum Mol Genet ; 29(23): 3818-3829, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432325

RESUMO

Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat in intron 1 of the FXN gene, which results in transcriptional deficiency via epigenetic silencing. Most patients are homozygous for alleles containing > 500 triplets, but a subset (~20%) have at least one expanded allele with < 500 triplets and a distinctly milder phenotype. We show that in FRDA DNA methylation spreads upstream from the expanded repeat, further than previously recognized, and establishes an FRDA-specific region of hypermethylation in intron 1 (~90% in FRDA versus < 10% in non-FRDA) as a novel epigenetic signature. The hypermethylation of this differentially methylated region (FRDA-DMR) was observed in a variety of patient-derived cells; it significantly correlated with FXN transcriptional deficiency and age of onset, and it reverted to the non-disease state in isogenically corrected induced pluripotent stem cell (iPSC)-derived neurons. Bisulfite deep sequencing of the FRDA-DMR in peripheral blood mononuclear cells from 73 FRDA patients revealed considerable intra-individual epiallelic variability, including fully methylated, partially methylated, and unmethylated epialleles. Although unmethylated epialleles were rare (median = 0.33%) in typical patients homozygous for long GAA alleles with > 500 triplets, a significantly higher prevalence of unmethylated epialleles (median = 9.8%) was observed in patients with at least one allele containing < 500 triplets, less severe FXN deficiency (>20%) and later onset (>15 years). The higher prevalence in mild FRDA of somatic FXN epialleles devoid of DNA methylation is consistent with variegated epigenetic silencing mediated by expanded triplet-repeats. The proportion of unsilenced somatic FXN genes is an unrecognized phenotypic determinant in FRDA and has implications for the deployment of effective therapies.


Assuntos
Metilação de DNA , Epigênese Genética , Ataxia de Friedreich/patologia , Inativação Gênica , Leucócitos Mononucleares/patologia , Fenótipo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Ataxia de Friedreich/genética , Humanos , Lactente , Leucócitos Mononucleares/metabolismo , Masculino , Adulto Jovem
7.
Mol Neurobiol ; 57(6): 2639-2653, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291635

RESUMO

Friedreich's ataxia (FRDA) is a genetic neurodegenerative disease that is caused by guanine-adenine-adenine (GAA) nucleotide repeat expansions in the first intron of the frataxin (FXN) gene. Although present in the intron, this mutation leads to a substantial decrease in protein expression. Currently, no effective treatment is available for FRDA, and, in addition to FXN, other targets with therapeutic potential are continuously sought. As miRNAs can regulate the expression of a broad spectrum of genes, are used as biomarkers, and can serve as therapeutic tools, we decided to identify and characterize differentially expressed miRNAs and their targets in FRDA cells compared to unaffected control (CTRL) cells. In this study, we performed an integrated miRNAseq and RNAseq analysis using the same cohort of primary FRDA and CTRL cells. The results of the transcriptome studies were supported by bioinformatic analyses and validated by qRT-PCR. miRNA interactions with target genes were assessed by luciferase assays, qRT-PCR, and immunoblotting. In silico analysis identified the FXN transcript as a target of five miRNAs upregulated in FRDA cells. Further studies confirmed that miRNA-224-5p indeed targets FXN, resulting in decreases in mRNA and protein levels. We also validated the ability of miRNA-10a-5p to bind and regulate the levels of brain-derived neurotrophic factor (BDNF), an important modulator of neuronal growth. We observed a significant decrease in the levels of miRNA-10a-5p and increase in the levels of BDNF upon correction of FRDA cells via zinc-finger nuclease (ZFN)-mediated excision of expanded GAA repeats. Our comprehensive transcriptome analyses identified miRNA-224-5p and miRNA-10a-5p as negative regulators of the FXN and BDNF expression, respectively. These results emphasize not only the importance of miRNAs in the pathogenesis of FRDA but also their potential as therapeutic targets for this disease.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , MicroRNAs/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Perfilação da Expressão Gênica , Humanos , Proteínas de Ligação ao Ferro/genética , MicroRNAs/genética , Expansão das Repetições de Trinucleotídeos , Frataxina
8.
Ann Clin Transl Neurol ; 6(3): 546-553, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911578

RESUMO

Objective: In vitro, in vivo, and open-label studies suggest that interferon gamma (IFN-γ 1b) may improve clinical features in Friedreich Ataxia through an increase in frataxin levels. The present study evaluates the efficacy and safety of IFN-γ 1b in the treatment of Friedreich Ataxia through a double-blind, multicenter, placebo-controlled trial. Methods: Ninety-two subjects with FRDA between 10 and 25 years of age were enrolled. Subjects received either IFN-γ 1b or placebo for 6 months. The primary outcome measure was the modified Friedreich Ataxia Rating Scale (mFARS). Results: No difference was noted between the groups after 6 months of treatment in the mFARS or secondary outcome measures. No change was noted in buccal cell or whole blood frataxin levels. However, during an open-label extension period, subjects had a more stable course than expected based on natural history data. Conclusions: This study provides no direct evidence for a beneficial effect of IFN-γ1b in FRDA. The modest stabilization compared to natural history data leaves open the possibility that longer studies may demonstrate benefit.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Interferon gama/uso terapêutico , Adolescente , Adulto , Criança , Método Duplo-Cego , Feminino , Ataxia de Friedreich/sangue , Humanos , Proteínas de Ligação ao Ferro/sangue , Masculino , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento , Adulto Jovem , Frataxina
9.
Ann Clin Transl Neurol ; 6(1): 15-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30656180

RESUMO

Objective: Previous studies have demonstrated that suppression of Nrf2 in Friedreich ataxia tissues contributes to excess oxidative stress, mitochondrial dysfunction, and reduced ATP production. Omaveloxolone, an Nrf2 activator and NF-kB suppressor, targets dysfunctional inflammatory, metabolic, and bioenergetic pathways. The dose-ranging portion of this Phase 2 study assessed the safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia patients (NCT02255435). Methods: Sixty-nine Friedreich ataxia patients were randomized 3:1 to either omaveloxolone or placebo administered once daily for 12 weeks. Patients were randomized in cohorts of eight patients, at dose levels of 2.5-300 mg/day. Results: Omaveloxolone was well tolerated, and adverse events were generally mild. Optimal pharmacodynamic changes (noted by changes in ferritin and GGT) were observed at doses of 80 and 160 mg/day. No significant changes were observed in the primary outcome, peak work load in maximal exercise testing (0.9 ± 2.9 W, placebo corrected). At the 160 mg/day dose, omaveloxolone improved the secondary outcome of the mFARS by 3.8 points versus baseline (P = 0.0001) and by 2.3 points versus placebo (P = 0.06). Omaveloxolone produced greater improvements in mFARS in patients that did not have musculoskeletal foot deformity (pes cavus). In patients without this foot deformity, omaveloxolone improved mFARS by 6.0 points from baseline (P < 0.0001) and by 4.4 points versus placebo (P = 0.01) at the 160 mg/day. Interpretation: Treatment of Friedreich ataxia patients with omaveloxolone at the optimal dose level of 160 mg/day appears to improve neurological function. Therefore, omaveloxolone treatment is being examined in greater detail at 150 mg/day for Friedreich ataxia.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Fator 2 Relacionado a NF-E2/agonistas , NF-kappa B/antagonistas & inibidores , Triterpenos/farmacologia , Adolescente , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Resultado do Tratamento , Adulto Jovem
10.
Jt Comm J Qual Patient Saf ; 45(4): 259-267, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665836

RESUMO

INTRODUCTION: Within a health care landscape characterized by increasing financial pressures, fluctuating payment models, and an increasing prevalence of clinician burnout, structures to strategically support innovation are imperative to financial and clinical success. METHODS: We developed the Brigham Care Redesign Incubator and Startup Program (BCRISP), a flexible model to test, evaluate, and scale innovative care redesign proposals. We evaluated its impact via analysis of programmatic and financial data, as well as through exploration of individual project outcomes. RESULTS: In 5 years, BCRISP has evaluated 283 innovations, piloted 25 projects, and generated $1.8 million in total medical expense reduction and $7.1 million in increased net revenue for our institution. Initially, it was conceived as a mechanism to engage staff in population health initiatives. As shifts toward risk-based reimbursement have slowed, we have observed a similar transition among proposed and supported innovation in the program. CONCLUSIONS: BCRISP enabled front-line clinical employees to design and pilot solutions to common and important clinical care problems, delivering financial return and improvements in care delivery. The underlying structure has been able to adapt to the changing political and economic climate, demonstrating a flexible and powerful approach to strategic investment that could be applied broadly by many health care provider organizations.


Assuntos
Centros Médicos Acadêmicos/economia , Redução de Custos/economia , Atenção à Saúde/economia , Difusão de Inovações , Procedimentos Clínicos/economia , Humanos , Comunicação Interdisciplinar , Colaboração Intersetorial , Massachusetts , Projetos Piloto , Gestão da Saúde da População , Resolução de Problemas , Melhoria de Qualidade/economia
12.
Sci Rep ; 8(1): 17043, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451920

RESUMO

Frataxin is a highly conserved protein encoded by the frataxin (FXN) gene. The full-length 210-amino acid form of protein frataxin (1-210; isoform A) expressed in the cytosol of cells rapidly translocates to the mitochondria, where it is converted to the mature form (81-210) by mitochondrial processing peptidase. Mature frataxin (81-210) is a critically important protein because it facilitates the assembly of mitochondrial iron-sulfur cluster protein complexes such as aconitase, lipoate synthase, and succinate dehydrogenases. Decreased expression of frataxin protein is responsible for the devastating rare genetic disease of Friedreich's ataxia. The mitochondrial form of frataxin has long been thought to be present in erythrocytes even though paradoxically, erythrocytes lack mitochondria. We have discovered that erythrocyte frataxin is in fact a novel isoform of frataxin (isoform E) with 135-amino acids and an N-terminally acetylated methionine residue. There is three times as much isoform E in erythrocytes (20.9 ± 6.4 ng/mL) from the whole blood of healthy volunteers (n = 10) when compared with the mature mitochondrial frataxin present in other blood cells (7.1 ± 1.0 ng/mL). Isoform E lacks a mitochondrial targeting sequence and so is distributed to both cytosol and the nucleus when expressed in cultured cells. When extra-mitochondrial frataxin isoform E is expressed in HEK 293 cells, it is converted to a shorter isoform identical to the mature frataxin found in mitochondria, which raises the possibility that it is involved in disease etiology. The ability to specifically quantify extra-mitochondrial and mitochondrial isoforms of frataxin in whole blood will make it possible to readily follow the natural history of diseases such as Friedreich's ataxia and monitor the efficacy of therapeutic interventions.


Assuntos
Eritrócitos/metabolismo , Proteínas de Ligação ao Ferro/sangue , Isoformas de Proteínas/sangue , Acetilação , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Mitocôndrias/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Frataxina
13.
BMJ Open Qual ; 7(3): e000245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094344

RESUMO

30-day readmissions for patients at skilled nursing facilities (SNF) are common and preventable. We implemented a readmission review process for patients readmitted from two SNFs, involving an electronic review tool and monthly conferences. The electronic review tool captures information related to preventability and factors contributing to readmission. The study included 128 patients, readmitted within 30 days from 1 October 2015 through 1 May 2017, at a tertiary care academic medical centre in Boston, MA, and two partnering SNFs. There was a discrepancy in preventability rating between SNF and hospital reviewers, with 79.7% of cases rated not preventable by the SNF, and 58.6% by the hospital. There was moderate positive correlation between the hospital's and SNFs' preventability ratings (rs=0.652, p<0.001). In most cases, the SNF reviewers felt that no factors contributed (57.8%), and hospital reviewers felt that issues with end-of-life planning (14.1%) and medical complexity (12.5%) were major factors. Despite the lack of strong correlation between SNF and hospital responses, several cross-continuum quality improvement projects were developed. We found that implementation of a SNF readmission review process employing bidirectional review by SNF and hospital was feasible, and facilitated systems-based improvement in the transition from hospital to postacute care.

14.
Neurol Genet ; 4(4): e250, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065952

RESUMO

OBJECTIVE: To determine the natural history of contrast acuity in Friedreich ataxia. METHODS: In the Friedreich Ataxia-Clinical Outcome Measures Study, participants (n = 764) underwent binocular high- and low-contrast visual acuity testing at annual study visits. Mixed-effects linear regression was used to model visual acuity as a function of time, with random intercepts and slopes to account for intraindividual correlation of repeated measurements. A time-varying covariate was used to adjust for diabetes, and interaction terms were used to assess for effect modification by GAA repeat length, disease duration, and other variables. RESULTS: Across a median of 4.4 years of follow-up, visual acuity decreased significantly at 100% contrast (-0.37 letters/y, 95% confidence interval [CI]: -0.52 to -0.21), 2.5% contrast (-0.81 letters/year, 95% CI: -0.99 to -0.65), and 1.25% contrast (-1.12 letters/y, 95% CI: -1.29 to -0.96 letters/year). There was a significant interaction between time and GAA repeat length such that the rate of decrease in visual acuity was greater for patients with higher GAA repeat lengths at 2.5% contrast (p = 0.018) and 1.25% contrast (p = 0.043) but not 100% contrast. There was no effect modification by age at onset after adjusting for GAA repeat length. CONCLUSIONS: Low-contrast visual acuity decreases linearly over time in Friedreich ataxia, and the rate of decrease is greater at higher GAA repeat lengths. Contrast sensitivity has the potential to serve as a biomarker and surrogate outcome in future studies of Friedreich ataxia.

15.
PLoS One ; 13(2): e0192779, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447225

RESUMO

Friedreich's ataxia (FA) is an autosomal recessive neurodegenerative disorder, which results primarily from reduced expression of the mitochondrial protein frataxin. FA has an estimated prevalence of one in 50,000 in the population, making it the most common hereditary ataxia. Paradoxically, mortality arises most frequently from cardiomyopathy and cardiac failure rather than from neurological effects. Decreased high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-l) levels in the general population are associated with an increased risk of mortality from cardiomyopathy and heart failure. However, the pathophysiology of heart disease in FA is non-vascular and there are conflicting data on HDL-cholesterol in FA. Two studies have shown a decrease in HDL-cholesterol compared with controls and two have shown there was no difference between FA and controls. One also showed that there was no difference in serum Apo-A-I levels in FA when compared with controls. Using a highly specific stable isotope dilution mass spectrometry-based assay, we demonstrated a 21.6% decrease in serum ApoA-I in FA patients (134.8 mg/dL, n = 95) compared with non-affected controls (172.1 mg/dL, n = 95). This is similar to the difference in serum ApoA-I levels between non-smokers and tobacco smokers. Knockdown of frataxin by > 70% in human hepatoma HepG2 cells caused a 20% reduction in secreted ApoA-I. Simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor caused a 200% increase in HMG-CoA in the control HepG2 cells with a similar increase in the frataxin knockdown HepG2 cells, back to levels found in the control cells. There was a concomitant 20% increase in secreted ApoA-I to levels found in the control cells that were treated with simvastatin. This study provides compelling evidence that ApoA-I levels are reduced in FA patients compared with controls and suggest that statin treatment would normalize the ApoA-I levels.


Assuntos
Apolipoproteína A-I/sangue , Ataxia de Friedreich/sangue , Proteínas de Ligação ao Ferro/genética , Adolescente , Adulto , Apolipoproteína A-I/química , Criança , Cromatografia Líquida , Feminino , Células HEK293 , Células Hep G2 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Masculino , Espectrometria de Massas , Sinvastatina/administração & dosagem , Adulto Jovem , Frataxina
16.
Anal Chem ; 90(3): 2216-2223, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29272104

RESUMO

Friedreich's ataxia (FA) is an autosomal recessive disease caused by an intronic GAA triplet expansion in the FXN gene, leading to reduced expression of the mitochondrial protein frataxin. FA is estimated to affect 1 in 50 000 with a mean age of death in the fourth decade of life. There are no approved treatments for FA, although experimental approaches, which involve up-regulation or replacement of frataxin protein, are being tested. Frataxin is undetectable in serum or plasma, and whole blood cannot be used because it is present in long-lived erythrocytes. Therefore, an assay was developed for analyzing frataxin in platelets, which have a half-life of 10 days. The assay is based on stable isotope dilution immunopurification two-dimensional nano-ultra high performance liquid chromatography/parallel reaction monitoring/mass spectrometry. The lower limit of quantification was 0.078 pg frataxin/µg protein, and the assay had 100% sensitivity and specificity for discriminating between controls and FA cases. The mean levels of control and FA platelet frataxin were 9.4 ± 2.6 and 2.4 ± 0.6 pg/µg protein, respectively. The assay should make it possible to rigorously monitor the effects of therapeutic interventions on frataxin expression in this devastating disease.


Assuntos
Biomarcadores/sangue , Plaquetas/química , Ataxia de Friedreich/diagnóstico , Proteínas de Ligação ao Ferro/sangue , Doenças Raras/diagnóstico , Adolescente , Adulto , Criança , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem , Frataxina
17.
PLoS One ; 12(12): e0189990, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261783

RESUMO

Friedreich's ataxia (FRDA) is a genetic neurodegenerative disorder caused by transcriptional silencing of the frataxin gene (FXN) due to expansions of GAA repeats in intron 1. FRDA manifests with multiple symptoms, which may include ataxia, cardiomyopathy and diabetes mellitus. Expanded GAA tracts are genetically unstable, exhibiting both expansions and contractions. GAA length correlates with severity of FRDA symptoms and inversely with age of onset. Thus, tissue-specific somatic instability of long GAA repeats may be implicated in the development of symptoms and disease progression. Herein, we determined the extent of somatic instability of the GAA repeats in heart, cerebral cortex, spinal cord, cerebellar cortex, and pancreatic tissues from 15 FRDA patients. Results demonstrate differences in the lengths of the expanded GAAs among different tissues, with significantly longer GAA tracts detected in heart and pancreas than in other tissues. The expansion bias detected in heart and pancreas may contribute to disease onset and progression, making the mechanism of somatic instability an important target for therapy. Additionally, we detected significant differences in GAA tract lengths between lymphocytes and fibroblast pairs derived from 16 FRDA patients, with longer GAA tracts present in the lymphocytes. This result urges caution in direct comparisons of data obtained in these frequently used FRDA models. Furthermore, we conducted a longitudinal analysis of the GAA repeat length in lymphocytes collected over a span of 7-9 years and demonstrated progressive expansions of the GAAs with maximum gain of approximately 9 repeats per year. Continuous GAA expansions throughout the patient's lifespan, as observed in FRDA lymphocytes, should be considered in clinical trial designs and data interpretation.


Assuntos
Ataxia de Friedreich/genética , Instabilidade Genômica , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Proteínas de Ligação ao Ferro/genética , Estudos Longitudinais , Linfócitos/metabolismo , Masculino , Fatores de Tempo , Adulto Jovem , Frataxina
18.
Dis Model Mech ; 10(11): 1353-1369, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125828

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron-sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Biossíntese de Proteínas , Análise de Sequência de RNA , Células Cultivadas , Perfilação da Expressão Gênica , Ontologia Genética , Humanos
19.
Expert Rev Neurother ; 17(9): 895-907, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28724340

RESUMO

INTRODUCTION: Friedreich ataxia (FRDA) is a progressive, inherited, neurodegenerative disease for which there is currently no cure or approved treatment. FRDA is caused by deficits in the production and expression of frataxin, a protein found in the mitochondria that is most likely responsible for regulating iron-sulfur cluster enzymes within the cell. A decrease in frataxin causes dysfunction of adenosine triphosphate synthesis, accumulation of mitochondrial iron, and other events leading to downstream cellular dysfunction. Areas covered: Therapeutic development for FRDA currently focuses on improving mitochondrial function and finding ways to increase frataxin expression. Additionally, the authors will review potential approaches aimed at iron modulation and genetic modulation. Finally, gene therapy is progressing rapidly and is being explored as a treatment for FRDA. Expert commentary: The collection of multiple therapeutic approaches provides many possible ways to treat FRDA. Although the mitochondrial approaches are not thought to be curative, as the primary frataxin deficit will remain, they may still produce improvements in quality of life and slowing of progression. Therapies aimed at frataxin restoration are more likely to truly modify the disease, with gene therapy as the best possibility to alter the course of the disease from both a cardiac and neurological perspective.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Humanos
20.
Stand Genomic Sci ; 7(1): 59-69, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23450133

RESUMO

Terriglobus saanensis SP1PR4(T) is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4(T) represents the first member of genus Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...