Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8548, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595763

RESUMO

Anthochlor pigments (chalcones and aurones) play an important role in yellow flower colourization, the formation of UV-honey guides and show numerous health benefits. The B-ring hydroxylation of chalcones is performed by membrane bound cytochrome P450 enzymes. It was assumed that usual flavonoid 3'-hydroxlases (F3'Hs) are responsible for the 3,4- dihydroxy pattern of chalcones, however, we previously showed that a specialized F3'H, namely chalcone 3-hydroxylase (CH3H), is necessary for the hydroxylation of chalcones. In this study, a sequence encoding membrane bound CH3H from Dahlia variabilis was recombinantly expressed in yeast and a purification procedure was developed. The optimized purification procedure led to an overall recovery of 30% recombinant DvCH3H with a purity of more than 84%. The enzyme was biochemically characterized with regard to its kinetic parameters on various substrates, including racemic naringenin, as well as its enantiomers (2S)-, and (2R)-naringenin, apigenin and kaempferol. We report for the first time the characterization of a purified Cytochrome P450 enzyme from the flavonoid biosynthesis pathway, including the transmembrane helix. Further, we show for the first time that recombinant DvCH3H displays a higher affinity for (2R)-naringenin than for (2S)-naringenin, although (2R)-flavanones are not naturally formed by chalcone isomerase.


Assuntos
Chalcona , Chalconas , Flavanonas , Chalconas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flavanonas/química , Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Especificidade por Substrato
2.
Plants (Basel) ; 10(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34579488

RESUMO

Malus × domestica (apple) accumulates particularly high amounts of dihydrochalcones in various tissues, with phloridzin (phloretin 2'-O-glucoside) being prevalent, although small amounts of 3-hydroxyphloretin and 3-hydroxyphloridzin are also constitutively present. The latter was shown to correlate with increased disease resistance of transgenic M. × domestica plants. Two types of enzymes could be involved in 3-hydroxylation of dihydrochalcones: polyphenol oxidases or the flavonoid 3'-hydroxylase (F3'H), which catalyzes B-ring hydroxylation of flavonoids. We isolated two F3'H cDNA clones from apple leaves and tested recombinant Malus F3'Hs for their substrate specificity. From the two isolated cDNA clones, only F3'HII encoded a functionally active enzyme. In the F3'HI sequence, we identified two putatively relevant amino acids that were exchanged in comparison to that of a previously published F3'HI. Site directed mutagenesis, which exchanged an isoleucine into methionine in position 211 restored the functional activity, which is probably because it is located in an area involved in interaction with the substrate. In contrast to high activity with various flavonoid substrates, the recombinant enzymes did not accept phloretin under assay conditions, making an involvement in the dihydrochalcone biosynthesis unlikely.

3.
J Pharm Biomed Anal ; 188: 113412, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32590301

RESUMO

Biopharmaceutical drug substances are generally produced using fermentation technology and are subsequently purified in the following downstream process. For the determination of critical quality attributes (CQAs), such as target protein titer and purity, monitoring tools are required before quality control analysis. We herein present a novel reversed phase liquid chromatography method (RPLC), which enables facile and robust protein quantification during upstream and downstream processing of intracellularly produced proteins in E. coli. The overall goal was to develop a fast, robust and mass spectrometry compatible method which can baseline resolve and quantify each protein of interest. Method development consisted of three steps, oriented on an Analytical Quality by Design (AQbD) workflow: (i) the stationary phase as primary parameter was chosen based on state-of-the art technology thus minimizing protein on-column adsorption and providing high efficiency, (ii) secondary parameters (i.e. gradient conditions and column temperature) were optimized applying chromatographic modeling, and (iii) the established Method Operable Design Region (MODR) was challenged and confirmed during robustness testing, performed in-silico and experimentally by a Design of experiment (DoE) based approach. Finally, we validated the RPLC method for pivotal validation parameters (i.e. linearity, limit of quantification, and repeatability) and compared it for protein quantification against a well-established analytical methodology. The outcome of this study shows (i) a protocol for RPLC development using an AQbD principle for new method generation and (ii) a highly versatile RPLC method, suited for quick and straightforward recombinant protein titer measurement being applicable for the detection of a broad range of proteins.


Assuntos
Cromatografia de Fase Reversa , Escherichia coli , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Controle de Qualidade , Projetos de Pesquisa
4.
Bioengineering (Basel) ; 7(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935883

RESUMO

Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host Escherichia coli presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts are made to establish plasmid-free expression, ensuring more stable process conditions. Another strategy to stabilize production processes is lactose induction, leading to increased soluble product formation and cell fitness, as shown in several studies performed with plasmid-based expression systems. Within this study we wanted to investigate lactose induction for a strain with a genome-integrated gene of interest for the first time. We found unusually high specific lactose uptake rates, which we could attribute to the low levels of lac-repressor protein that is usually encoded not only on the genome but additionally on pET plasmids. We further show that these unusually high lactose uptake rates are toxic to the cells, leading to increased cell leakiness and lysis. Finally, we demonstrate that in contrast to plasmid-based T7 expression systems, IPTG induction is beneficial for genome-integrated T7 expression systems concerning cell fitness and productivity.

5.
Yeast ; 37(2): 217-226, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31502285

RESUMO

Cytochrome P450s comprise one of the largest protein superfamilies. They occur in every kingdom of life and catalyse a variety of essential reactions. Their production is of utmost interest regarding biotransformation and structure-function elucidation. However, they have proven hard to express due to their membrane anchor, their complex co-factor requirements and their need for a redox-partner. In our study, we investigated and compared different yeast strains for the production of the plant cytochrome P450 chalcone 3-hydroxylase. To our knowledge, this is the first study evaluating different yeasts for the expression of this abundant and highly significant protein superfamily. Saccharomyces cerevisiae and three different strains of Pichia pastoris expressing chalcone 3-hydroxylase were cultivated in controlled bioreactor runs and evaluated regarding physiological parameters and expression levels of the cytochrome P450. Production differed significantly between the different strains and was found highest in the investigated P. pastoris MutS strain KM71H where 8 mg P450 per gram dry cell weight were detected. We believe that this host could be suitable for the expression of many eukaryotic, especially plant-derived, cytochrome P450s as it combines high specific product yields together with straightforward cultivation techniques for achieving high biomass concentrations. Both factors greatly facilitate subsequent establishment of purification procedures for the cytochrome P450 and make the yeast strain an ideal platform for biotransformation as well.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Reatores Biológicos , Biotransformação , Técnicas de Cultura de Células/métodos , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Pichia/enzimologia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
6.
Microb Cell Fact ; 17(1): 169, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376846

RESUMO

BACKGROUND: Escherichia coli is one of the most widely used hosts for recombinant protein production in academia and industry. Strain BL21(DE3) is frequently employed due to its advantageous feature of lacking proteases which avoids degradation of target protein. Usually it is used in combination with the T7-pET system where induction is performed by one point addition of IPTG. We recently published a few studies regarding lactose induction in BL21(DE3) strains. BL21(DE3) can only take up the glucose-part of the disaccharide when fed with lactose. However, initially additional glucose has to be supplied as otherwise the ATP-related lactose uptake barely happens. Yet, as lactose is an inexpensive compound compared to glucose and IPTG, a new induction strategy by a lactose-only feed during induction seems attractive. Thus, we investigated this idea in the galactose metabolizing strain HMS174(DE3). RESULTS: We show that strain HMS174(DE3) can be cultivated on lactose as sole carbon source during induction. We demonstrate that strain HMS174(DE3) exhibits higher product and biomass yields compared to BL21(DE3) when cultivated in a lactose fed-batch. More importantly, HMS174(DE3) cultivated on lactose even expresses more product than BL21(DE3) in a standard IPTG induced glucose fed-batch at the same growth rate. Finally, we demonstrate that productivity in HMS174(DE3) lactose-fed batch cultivations can easily be influenced by the specific lactose uptake rate (qs,lac). This is shown for two model proteins, one expressed in soluble form and one as inclusion body. CONCLUSIONS: As strain HMS174(DE3) expresses even slightly higher amounts of target protein in a lactose fed-batch than BL21(DE3) in a standard cultivation, it seems a striking alternative for recombinant protein production. Especially for large scale production of industrial enzymes cheap substrates are essential. Besides cost factors, the strategy allows straight forward adjustment of specific product titers by variation of the lactose feed rate.


Assuntos
Escherichia coli/citologia , Técnicas de Cultura Celular por Lotes , Escherichia coli/metabolismo , Isopropiltiogalactosídeo/farmacologia , Lactose/metabolismo , Oxigenases de Função Mista/metabolismo
7.
Biosci Rep ; 38(2)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29436484

RESUMO

Cytochrome P450s (P450s) comprise one of the largest known protein families. They occur in every kingdom of life and catalyze essential reactions, such as carbon source assimilation, synthesis of hormones and secondary metabolites, or degradation of xenobiotics. Due to their outstanding ability of specifically hydroxylating complex hydrocarbons, there is a great demand to use these enzymes for biocatalysis, including applications at an industrial scale. Thus, the recombinant production of these enzymes is intensively investigated. However, especially eukaryotic P450s are difficult to produce. Challenges are faced due to complex cofactor requirements and the availability of a redox-partner (cytochrome P450 reductase, CPR) can be a key element to get active P450s. Additionally, most eukaryotic P450s are membrane bound which complicates the recombinant production. This review describes current strategies for expression of P450s in the microbial cell factories Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Animais , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
8.
Sci Rep ; 7: 45072, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332595

RESUMO

When producing recombinant proteins, the use of Escherichia coli strain BL21(DE3) in combination with the T7-based pET-expression system is often the method of choice. In a recent study we introduced a mechanistic model describing the correlation of the specific glucose uptake rate (qs,glu) and the corresponding maximum specific lactose uptake rate (qs,lac,max) for a pET-based E. coli BL21(DE3) strain producing a single chain variable fragment (scFv). We showed the effect of qs,lac,max on productivity and product location underlining its importance for recombinant protein production. In the present study we investigated the mechanistic qs,glu/qs,lac,max correlation for four pET-based E. coli BL21(DE3) strains producing different recombinant products and thereby proved the mechanistic model to be platform knowledge for E. coli BL21(DE3). However, we found that the model parameters strongly depended on the recombinant product. Driven by this observation we tested different dynamic bioprocess strategies to allow a faster investigation of this mechanistic correlation. In fact, we succeeded and propose an experimental strategy comprising only one batch cultivation, one fed-batch cultivation as well as one dynamic experiment, to reliably determine the mechanistic model for qs,glu/qs,lac,max and get trustworthy model parameters for pET-based E. coli BL21(DE3) strains which are the basis for bioprocess development.


Assuntos
Escherichia coli/fisiologia , Fenômenos Mecânicos , Modelos Biológicos , Açúcares/metabolismo , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...