Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 192: 110578, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36473318

RESUMO

The associated particle (AP) technique has recently been used with a high-purity germanium γ-ray spectrometer to assess its capability to improve field identification of recovered chemical warfare (CW) materiel through prompt gamma-ray neutron activation analysis (PGNAA) measurements. A particularly challenging pair of CW agents commonly found in recovered munitions are phosgene (CG) and cyanogen chloride (CK), which have two of three elements in common, i.e. chlorine and carbon, but differ in the third being either oxygen or nitrogen. The detection of both latter elements is complicated by high oxygen concentration in the field environment which interferes with the small signal produced from the chemical agents. The matter is further complicated by the precautionary field practice of overpacking recovered munitions with vermiculite in larger steel multiple round containers (MRCs), which places additional oxygen-rich material in contact with the munition while further attenuating an already weak signal emitted from the munition center. This work reports quantitative results from realistic field measurements of CG and CK simulants in mock 4.2-inch (11 cm) mortar rounds overpacked with vermiculite in a large MRC. Results obtained with the AP technique are compared to those obtained with the traditional PGNAA approach for both overpacked- and bare-munition measurements. The AP technique is shown to provide a much more confident discrimination between the two chemicals, particularly for the more challenging field-relevant overpacked measurements, where a significant gain in sensitivity to all the key elements (chlorine, carbon, nitrogen and oxygen) is achieved.


Assuntos
Fosgênio , Cloro , Análise Espectral , Carbono , Nitrogênio/análise , Oxigênio , Nêutrons
2.
Phys Rev Lett ; 124(3): 032502, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031845

RESUMO

Radioactive ^{129}Sb, which can be treated as a proton plus semimagic ^{128}Sn core within the particle-core coupling scheme, was studied by Coulomb excitation. Reduced electric quadrupole transition probabilities, B(E2), for the 2^{+}⊗πg_{7/2} multiplet members and candidate πd_{5/2} state were measured. The results indicate that the total electric quadrupole strength of ^{129}Sb is a factor of 1.39(11) larger than the ^{128}Sn core, which is in stark contrast to the expectations of the empirically successful particle-core coupling scheme. Shell-model calculations performed with two different sets of nucleon-nucleon interactions suggest that this enhanced collectivity is due to constructive quadrupole coherence in the wave functions stemming from the proton-neutron residual interactions, where adding one nucleon to a core near a double-shell closure can have a pronounced effect. The enhanced electric quadrupole strength is an early signal of the emerging nuclear collectivity that becomes dominant away from the shell closure.

3.
Phys Rev Lett ; 118(9): 092503, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306272

RESUMO

Radioactive ^{136}Te has two valence protons and two valence neutrons outside of the ^{132}Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon-nucleon interactions. Coulomb excitation of ^{136}Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0_{1}^{+}→2_{1}^{+}), Q(2_{1}^{+}), and g(2_{1}^{+}). The results indicate that the first-excited state, 2_{1}^{+}, composed of the simple 2p⊕2n system, is prolate deformed, and its wave function is dominated by excited valence neutron configurations, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2_{1}^{+}) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2_{1}^{+}) was used to differentiate among several state-of-the-art theoretical calculations. Our results are best described by the most recent shell model calculations.

4.
J Environ Radioact ; 137: 137-141, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25062116

RESUMO

A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed.


Assuntos
Radiação de Fundo , Raios gama , Monitoramento de Radiação/métodos , Produtos de Decaimento de Radônio/análise , Chuva , Tennessee
5.
Phys Rev Lett ; 94(12): 122501, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15903911

RESUMO

The B(E2;0(+)(1)-->2(+)(1)) values for the radioactive neutron-rich germanium isotopes (78,80)Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.

6.
Phys Rev Lett ; 91(15): 152701, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-14611462

RESUMO

Evaporation residue cross sections have been measured with neutron-rich radioactive 132Sn beams on 64Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2 x 10(4) particles per second and the smallest cross section measured was less than 5 mb. Large sub-barrier fusion enhancement was observed. Coupled-channel calculations taking into account inelastic excitation significantly underpredict the measured cross sections below the barrier. The presence of several neutron transfer channels with large positive Q values suggests that multinucleon transfer may play an important role in enhancing the fusion of 132Sn and 64Ni.

7.
Phys Rev Lett ; 89(2): 022501, 2002 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-12096989

RESUMO

Five prompt proton decay lines have been identified between deformed states in (59)Cu and three spherical states in (58)Ni by means of high-resolution in-beam particle-gamma gamma coincidence spectroscopy. The GAMMASPHERE array coupled to dedicated ancillary detectors including four Delta E-E silicon strip detectors was used to study high-spin states in (59)Cu. The multiple discrete proton lines are found to probe the wave functions of states in the decay-out regime of well- and superdeformed states.

8.
Phys Rev Lett ; 88(22): 222501, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12059416

RESUMO

The B(E2;0(+)-->2+) values for the first 2+ excited states of neutron-rich 132,134,136Te have been measured using Coulomb excitation of radioactive ion beams. The B(E2) values obtained for 132,134Te are in excellent agreement with expectations based on the systematics of heavy stable Te isotopes, while that for 136Te is unexpectedly small. These results are discussed in terms of proton-neutron configuration mixing and shell-model calculations using realistic effective interactions.

9.
Phys Rev Lett ; 87(13): 132501, 2001 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-11580578

RESUMO

The ground state rotational bands of the N = Z nuclei (72)Kr, (76)Sr, and (80)Zr have been extended into the angular momentum region where rotation alignment of particles is normally expected. By measuring the moments of inertia of these bands we have observed a consistent increase in the rotational frequency required to start pair breaking, when compared to neighboring nuclei. (72)Kr shows the most marked effect. It has been widely suggested that these "delayed alignments" arise from np-pairing correlations. However, alignment frequencies are very sensitive to shape degrees of freedom and normal pairing, so the new experimental observations are still open to interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...