Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Cell Mater ; 43: 267-276, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678763

RESUMO

Implant infection impairs osseointegration of orthopaedic implants by inducing inflammation. Acinetobacter spp. are increasingly prevalent multi-drug resistant bacteria that can cause osteomyelitis. Acinetobacter spp. can also cause inflammation and thereby inhibit osseointegration in mice. The purpose of the present study was to investigate the role of quorum sensing in this context. Therefore, wild-type bacteria were compared with an isogenic abaI mutant defective in quorum sensing in a murine osseointegration model. The abaI quorum- sensing mutant affected significantly less osseointegration and interleukin (IL) 1ß levels, without detectably altering other pro-inflammatory cytokines. Wild-type bacteria had fewer effects on IL1 receptor (IL1R)-/- mice. These results indicated that quorum sensing in Acinetobacter spp. contributed to IL1ß induction and the resultant inhibition of osseointegration in mice. Moreover, targeting the Gram-negative acyl-homoserine lactone quorum sensing may be particularly effective for patients with Acinetobacter spp. infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter , Ortopedia , Acinetobacter/fisiologia , Infecções por Acinetobacter/microbiologia , Animais , Proteínas de Bactérias/farmacologia , Humanos , Inflamação , Camundongos , Osseointegração , Percepção de Quorum
2.
Bone Rep ; 12: 100250, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32090156

RESUMO

PURPOSE: The classic fracture model, described by Bonnarens and Einhorn in 1984, enlists a blunt guillotine to generate a closed fracture in a pre-stabilized rodent femur. However, in less experienced hands, this technique yields considerable variability in fracture pattern and requires highly-specialized equipment. This study describes a reproducible and low-cost model of mouse fracture healing using an open femoral osteotomy. METHODS: Femur fractures were produced in skeletally mature male and female mice using an open femoral osteotomy after intramedullary stabilization. Mice were recovered for up to 28 days prior to analysis with microradiographs, histomorphometry, a novel µCT methodology, and biomechanical torsion testing at weekly intervals. RESULTS: Eight mice were excluded due to complications (8/193, 4.1%), including unacceptable fracture pattern (2/193, 1.0%). Microradiographs showed progression of the fracture site to mineralized callus by 14 days and remodelling 28 days after surgery. Histomorphometry from 14 to 28 days revealed decreased cartilage area and maintained bone area. µCT analysis demonstrated a reduction in mineral surface from 14 to 28 days, stable mineral volume, decreased strut number, and increased strut thickness. Torsion testing at 21 days showed that fractured femurs had 61% of the ultimate torque, 63% of the stiffness, and similar twist to failure when compared to unfractured contralateral femurs. CONCLUSIONS: The fracture model described herein, an open femoral osteotomy, demonstrated healing comparable to that reported using closed techniques. This simple model could be used in future research with improved reliability and reduced costs compared to the current options.

3.
Biochem Biophys Res Commun ; 245(2): 572-82, 1998 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-9571197

RESUMO

We report the identification of rfbF and rfbC located adjacent to the previously identified rfbG (Gavini et. al. Biochem. Biophys. Res. Commun. 1997, 240, 153-161) from the non-symbiotic, non-pathogenic soil bacterium Azotobacter vinelandii. The rfbF open reading frame encodes a putative polypeptide of 256 amino acids. This polypeptide shares a homology of 74% with the RfbF of Synechocystis sp. and a 70% homology with the AscA of Yersinia pseudotuberculosis which function as alpha-D-glucose-1-phosphate cytidylyltransferases in the biosynthesis of the O-antigen. The rfbC encodes a putative polypeptide of 186 amino acids. It shows strongest homology to the RfbC of Synechocystis sp. (64%) and Salmonella typhimurium (40%). RfbC functions as a dTDP-4-Dehydrorhamnose 3,5-Epimerase. The genes identified here have a low G + C content (approximately 56%) as compared to the A. vinelandii chromosome (approximately 63%) which is characteristic of the rfb clusters identified in other bacteria and may be indicative of the acquisition of the rfb genes by interspecific gene transfer. Despite the high level of sequence conservation, the organization of the rfb genes in A. vinelandii deviates from the arrangement of the most thoroughly studied rfb gene clusters of Enterobacteriaceae.


Assuntos
Antígenos de Bactérias , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Sequência de Aminoácidos , Sequência de Bases , Carboidratos Epimerases/química , Clonagem Molecular , Enterobacteriaceae/genética , Genes Bacterianos/genética , Dados de Sequência Molecular , Antígenos O/biossíntese , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Biochem Biophys Res Commun ; 240(1): 153-61, 1997 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-9367902

RESUMO

We have identified the rfbG from a non-symbiotic and non-pathogenic soil bacterium, Azotobacter vinelandii. The nucleotide sequence analysis of the rfbG revealed an open reading frame that encodes a peptide of 360 amino acids. This deduced peptide shares 57% homology with the RfbG of Synechocystis and 47% homology with the RfbG of Yersinia pseudotuberculosis. The previously identified short-chain dehydrogenases/reductases family signature sequence is conserved in the sequence of the RfbG of A. vinelandii. Southern blotting analysis of A. vinelandii chromosome by probed with 1.1 kb PstI DNA fragment corresponding to rfbG revealed that it is present as single copy on A. vinelandii chromosome. Disrupting the rfbG present on the chromosome of A. vinelandii, by insertion of kanamycin resistance marker via homologous recombination, resulted in drastic changes in the growth characteristics. The rfbG-negative A. vinelandii grown in liquid medium exhibited agglutination that is characteristic of rfb- mutants of other bacteria, suggesting that we have cloned the functional copy of the rfbG of A. vinelandii.


Assuntos
Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Genes Bacterianos , Hidroliases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Análise Mutacional de DNA , Genes Bacterianos/fisiologia , Hidroliases/isolamento & purificação , Dados de Sequência Molecular , Antígenos O/química , Alinhamento de Sequência , Microbiologia do Solo
5.
J Biol Chem ; 271(4): 1884-9, 1996 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-8567634

RESUMO

We have identified the molecular basis for the nitrogenase negative phenotype exhibited by Azotobacter vinelandii UW97. This strain was initially isolated following nitrosoguanidine mutagenesis. Recently, it was shown that this strain lacks the Fe protein activity, which results in the synthesis of a FeMo cofactor-deficient apodinitrogenase. Activation of this apodinitrogenase requires the addition of both MgATP and wild-type Fe protein to the crude extracts made by A. vinelandii UW97 (Allen, R.M., Homer, M.J., Chatterjee R., Ludden, P.W., Roberts, G.P., and Shah, V.K. (1993) J. Biol. Chem. 268 23670-23674). Earlier, we proposed the sequence of events in the MoFe protein assembly based on the biochemical and spectroscopic analysis of the purified apodinitrogenase from A. vinelandii DJ54 (Gavini, N., Ma, L., Watt, G., and Burgess, B.K. (1994) Biochemistry 33, 11842-11849). Taken together, these results imply that the assembly process of apodinitrogenase is arrested at the same step in both of these strains. Since A. vinelandii DJ54 is a delta nifH strain, this strain is not useful in identifying the features of the Fe protein involved in the MoFe protein assembly. Here, we report a systematic analysis of an A. vinelandii UW97 mutant and show that, unlike A. vinelandii DJ54, the nifH gene of A. vinelandii UW97 has no deletion in either coding sequence or the surrounding sequences. The specific mutation responsible for the Nif- phenotype of A. vinelandii UW97 is the substitution of a non-conserved serine at position 44 of the Fe protein by a phenylalanine as shown by DNA sequencing. Furthermore, oligonucleotide site-directed mutagenesis was employed to confirm that the Nif- phenotype in A. vinelandii UW97 is exclusively due to the substitution of the Fe protein residue serine 44 by phenylalanine. By contrast, replacing Ser-44 with alanine did not affect the Nif phenotype of A. vinelandii. Therefore, it seems that the Nif- phenotype of A. vinelandii UW97 is caused by a general structural disturbance of the Fe protein due to the presence of the bulky phenylalanine at position 44.


Assuntos
Azotobacter vinelandii/genética , Genes Bacterianos , Fixação de Nitrogênio/genética , Sequência de Aminoácidos , Sequência Consenso , Dados de Sequência Molecular , Molibdoferredoxina/metabolismo , Mutagênese Sítio-Dirigida , Nitrogenase/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...