Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 108(6): 891-911, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026596

RESUMO

NEW FINDINGS: What is the central question of this study? Can we manipulate muscle recruitment to differentially enhance skeletal muscle fatigue resistance? What is the main finding and its importance? Through manipulation of muscle activation patterns, it is possible to promote distinct microvascular growth. Enhancement of fatigue resistance is closely associated with the distribution of the capillaries within the muscle, not necessarily with quantity. Additionally, at the acute stages of remodelling in response to indirect electrical stimulation, the improvement in fatigue resistance appears to be primarily driven by vascular remodelling, with metabolic adaptation of secondary importance. ABSTRACT: Exercise involves a complex interaction of factors influencing muscle performance, where variations in recruitment pattern (e.g., endurance vs. resistance training) may differentially modulate the local tissue environment (i.e., oxygenation, blood flow, fuel utilization). These exercise stimuli are potent drivers of vascular and metabolic change. However, their relative contribution to adaptive remodelling of skeletal muscle and subsequent performance is unclear. Using implantable devices, indirect electrical stimulation (ES) of locomotor muscles of rat at different pacing frequencies (4, 10 and 40 Hz) was used to differentially recruit hindlimb blood flow and modulate fuel utilization. After 7 days, ES promoted significant remodelling of microvascular composition, increasing capillary density in the cortex of the tibialis anterior by 73%, 110% and 55% for the 4 Hz, 10 and 40 Hz groups, respectively. Additionally, there was remodelling of the whole muscle metabolome, including significantly elevated amino acid turnover, with muscle kynurenic acid levels doubled by pacing at 10 Hz (P < 0.05). Interestingly, the fatigue index of skeletal muscle was only significantly elevated in 10 Hz (58% increase) and 40 Hz (73% increase) ES groups, apparently linked to improved capillary distribution. These data demonstrate that manipulation of muscle recruitment pattern may be used to differentially expand the capillary network prior to altering the metabolome, emphasising the importance of local capillary supply in promoting exercise tolerance.


Assuntos
Fadiga Muscular , Músculo Esquelético , Ratos , Animais , Músculo Esquelético/fisiologia , Capilares/fisiologia , Adaptação Fisiológica , Estimulação Elétrica
2.
PLoS One ; 18(2): e0280777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745593

RESUMO

Tri-Butyl Tin (TBT) remains as a legacy pollutant in the benthic environments. Although the toxic impacts and endocrine disruption caused by TBT to gastropod molluscs have been established, the changes in energy reserves allocated to maintenance, growth, reproduction and survival of European oysters Ostrea edulis, a target species of concerted benthic habitat restoration projects, have not been explored. This study was designed to evaluate the effect of TBT chloride (TBTCl) on potential ions and relevant metabolomic pathways and its association with changes in physiological, biochemical and reproductive parameters in O. edulis exposed to environmental relevant concentrations of TBTCl. Oysters were exposed to TBTCl 20 ng/L (n = 30), 200 ng/L (n = 30) and 2000 ng/L (n = 30) for nine weeks. At the end of the exposure, gametogenic stage, sex, energy reserve content and metabolomic profiling analysis were conducted to elucidate the metabolic alterations that occur in individuals exposed to those compounds. Metabolite analysis showed significant changes in the digestive gland biochemistry in oysters exposed to TBTCl, decreasing tissue ATP concentrations through a combination of the disruption of the TCA cycle and other important molecular pathways involved in homeostasis, mitochondrial metabolism and antioxidant response. TBTCl exposure increased mortality and caused changes in the gametogenesis with cycle arrest in stages G0 and G1. Sex determination was affected by TBTCl exposure, increasing the proportion of oysters identified as males in O. edulis treated at 20ng/l TBTCl, and with an increased proportion of inactive stages in oysters treated with 2000 ng/l TBTCl. The presence and persistence of environmental pollutants, such as TBT, could represent an additional threat to the declining O. edulis populations and related taxa around the world, by increasing mortality, changing reproductive maturation, and disrupting metabolism. Our findings identify the need to consider additional factors (e.g. legacy pollution) when identifying coastal locations for shellfish restoration.


Assuntos
Ostrea , Compostos de Trialquitina , Humanos , Masculino , Animais , Ostrea/fisiologia , Ecossistema , Compostos de Trialquitina/toxicidade , Metabolismo Energético
3.
J Physiol ; 601(7): 1207-1224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799478

RESUMO

In heart, glucose and glycolysis are important for anaplerosis and potentially therefore for d-ß-hydroxybutyrate (ßHB) oxidation. As a glucose store, glycogen may also furnish anaplerosis. We determined the effects of glycogen content on ßHB oxidation and glycolytic rates, and their downstream effects on energetics, in the isolated rat heart. High glycogen (HG) and low glycogen (LG) containing hearts were perfused with 11 mM [5-3 H]glucose and/or 4 mM [14 C]ßHB to measure glycolytic rates or ßHB oxidation, respectively, then freeze-clamped for glycogen and metabolomic analyses. Free cytosolic [NAD+ ]/[NADH] and mitochondrial [Q+ ]/[QH2 ] ratios were estimated using the lactate dehydrogenase and succinate dehydrogenase reaction, respectively. Phosphocreatine (PCr) and inorganic phosphate (Pi ) concentrations were measured using 31 P-nuclear magnetic resonance spectroscopy. Rates of ßHB oxidation in LG hearts were half that in HG hearts, with ßHB oxidation directly proportional to glycogen content. ßHB oxidation decreased glycolysis in all hearts. Glycogenolysis in glycogen-replete hearts perfused with ßHB alone was twice that of hearts perfused with ßHB and glucose, which had significantly higher levels of the glycolytic intermediates fructose 1,6-bisphosphate and 3-phosphoglycerate, and higher free cytosolic [NAD+ ]/[NADH]. ßHB oxidation increased the Krebs cycle intermediates citrate, 2-oxoglutarate and succinate, the total NADP/H pool, reduced mitochondrial [Q+ ]/[QH2 ], and increased the calculated free energy of ATP hydrolysis (∆GATP ). Although ßHB oxidation inhibited glycolysis, glycolytic intermediates were not depleted, and cytosolic free NAD remained oxidised. ßHB oxidation alone increased Krebs cycle intermediates, reduced mitochondrial Q and increased ∆GATP . We conclude that glycogen facilitates cardiac ßHB oxidation by anaplerosis. KEY POINTS: Ketone bodies (d-ß-hydroxybutyrate, acetoacetate) are increasingly recognised as important cardiac energetic substrates, in both healthy and diseased hearts. As 2-carbon equivalents they are cataplerotic, causing depletion of Krebs cycle intermediates; therefore their utilisation requires anaplerotic supplementation, and intra-myocardial glycogen has been suggested as a potential anaplerotic source during ketone oxidation. It is demonstrated here that cardiac glycogen does indeed provide anaplerotic substrate to facilitate ß-hydroxybutyrate oxidation in isolated perfused rat heart, and this contribution was quantified using a novel pulse-chase metabolic approach. Further, using metabolomics and 31 P-MR, it was shown that glycolytic flux from myocardial glycogen increased the heart's ability to oxidise ßHB, and ßHB oxidation increased the mitochondrial redox potential, ultimately increasing the free energy of ATP hydrolysis.


Assuntos
Glicogênio , NAD , Ratos , Animais , NAD/metabolismo , Glicogênio/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Glicólise , Oxirredução , Miocárdio/metabolismo , Corpos Cetônicos/metabolismo , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Nat Cardiovasc Res ; 2: 1221-1245, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38500966

RESUMO

Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with ß-alanine buildup. Raising ß-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.

5.
Physiol Rep ; 10(10): e15309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614576

RESUMO

Elevating blood ketones may enhance exercise capacity and modulate adaptations to exercise training; however, these effects may depend on whether hyperketonemia is induced endogenously through dietary carbohydrate restriction, or exogenously through ketone supplementation. To determine this, we compared the effects of endogenously- and exogenously-induced hyperketonemia on exercise capacity and adaptation. Trained endurance athletes undertook 6 days of laboratory based cycling ("race") whilst following either: a carbohydrate-rich control diet (n = 7; CHO); a carbohydrate-rich diet + ketone drink four-times daily (n = 7; Ex Ket); or a ketogenic diet (n = 7; End Ket). Exercise capacity was measured daily, and adaptations in exercise metabolism, exercise physiology and postprandial insulin sensitivity (via an oral glucose tolerance test) were measured before and after dietary interventions. Urinary ß-hydroxybutyrate increased by ⁓150-fold and ⁓650-fold versus CHO with Ex Ket and End Ket, respectively. Exercise capacity was increased versus pre-intervention by ~5% on race day 1 with CHO (p < 0.05), by 6%-8% on days 1, 4, and 6 (all p < 0.05) with Ex Ket and decreased by 48%-57% on all race days (all p > 0.05) with End Ket. There was an ⁓3-fold increase in fat oxidation from pre- to post-intervention (p < 0.05) with End Ket and increased perceived exercise exertion (p < 0.05). No changes in exercise substrate metabolism occurred with Ex Ket, but participants had blunted postprandial insulin sensitivity (p < 0.05). Dietary carbohydrate restriction and ketone supplementation both induce hyperketonemia; however, these are distinct physiological conditions with contrasting effects on exercise capacity and adaptation to exercise training.


Assuntos
Resistência à Insulina , Adaptação Fisiológica , Carboidratos da Dieta/farmacologia , Exercício Físico , Humanos , Cetonas , Resistência Física/fisiologia
6.
Cancer Metab ; 9(1): 37, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649623

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) poses a serious clinical challenge as it is an aggressive form of the disease that lacks estrogen receptor, progesterone receptor, and ERBB2 (formerly HER2) gene amplification, which limits the treatment options. The Warburg phenotype of upregulated glycolysis in the presence of oxygen has been shown to be prevalent in TNBC. Elevated glycolysis satisfies the energy requirements of cancer cells, contributes to resistance to treatment by maintaining redox homeostasis and generating nucleotide precursors required for cell proliferation and DNA repair. Expression of the monocarboxylate transporter 1 (MCT1), which is responsible for the bidirectional transport of lactate, correlates with an aggressive phenotype and poor outcome in several cancer types, including breast cancer. In this study, 3-bromopyruvate (3BP), a lactate/pyruvate analog, was used to selectively target TNBC cells that express MCT1. METHODS: The cytotoxicity of 3BP was tested in MTT assays using human TNBC cell lines: BT20 (MCT1+/MCT4-), MDA-MB-23 (MCT1-/MCT4+), and BT20 in which MCT1 was knocked down (siMCT1-BT20). The metabolite profile of 3BP-treated and 3BP-untreated cells was investigated using LC-MS/MS. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of BT20 and MDA-MB-231 cells treated with 3BP were measured using a Seahorse XF96 extracellular flux analyzer. The impact of ionizing radiation on cell survival, alone or in combination with 3BP pre-treatment, was evaluated using clonogenic assays. RESULTS: Metabolomic analyses showed that 3BP causes inhibition of glycolysis, disturbance of redox homeostasis, decreased nucleotide synthesis, and was accompanied by a reduction in medium acidification. In addition, 3BP potentiated the cytotoxic effect of ionizing radiation, a treatment that is frequently used in the management of TNBC. CONCLUSIONS: Overall, MCT1-mediated metabolic perturbation in combination with radiotherapy is shown to be a promising strategy for the treatment of glycolytic tumors such as TNBC, overcoming the selectivity challenges of targeting glycolysis with glucose analogs.

7.
Metabolites ; 11(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806953

RESUMO

The diabetic heart is energetically and metabolically abnormal, with increased fatty acid oxidation and decreased glucose oxidation. One factor contributing to the metabolic dysfunction in diabetes may be abnormal handling of acetyl and acyl groups by the mitochondria. L-carnitine is responsible for their transfer across the mitochondrial membrane, therefore, supplementation with L-carnitine may provide a route to improve the metabolic state of the diabetic heart. The primary aim of this study was to use hyperpolarized magnetic resonance imaging (MRI) to investigate the effects of L-carnitine supplementation on the in vivo metabolism of [1-13C]pyruvate in diabetes. Male Wistar rats were injected with either vehicle or streptozotocin (55 mg/kg) to induce type-1 diabetes. Three weeks of daily i.p. treatment with either saline or L-carnitine (3 g/kg/day) was subsequently undertaken. In vivo cardiac function and metabolism were assessed with CINE and hyperpolarized MRI, respectively. L-carnitine supplementation prevented the progression of hyperglycemia, which was observed in untreated streptozotocin injected animals and led to reductions in plasma triglyceride and ß-hydroxybutyrate concentrations. Hyperpolarized MRI revealed that L-carnitine treatment elevated pyruvate dehydrogenase flux by 3-fold in the diabetic animals, potentially through increased buffering of excess acetyl-CoA units in the mitochondria. Improved functional recovery following ischemia was also observed in the L-carnitine treated diabetic animals.

8.
NMR Biomed ; 34(4): e4471, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458907

RESUMO

The diabetic heart has a decreased ability to metabolize glucose. The anti-ischemic drug meldonium may provide a route to counteract this by reducing l-carnitine levels, resulting in improved cardiac glucose utilization. Therefore, the aim of this study was to use the novel technique of hyperpolarized magnetic resonance to investigate the in vivo effects of treatment with meldonium on cardiac metabolism and function in control and diabetic rats. Thirty-six male Wistar rats were injected either with vehicle, or with streptozotocin (55 mg/kg) to induce a model of type 1 diabetes. Daily treatment with either saline or meldonium (100 mg/kg/day) was undertaken for three weeks. in vivo cardiac function and metabolism were assessed with CINE MRI and hyperpolarized magnetic resonance respectively. Isolated perfused hearts were challenged with low-flow ischemia/reperfusion to assess the impact of meldonium on post-ischemic recovery. Meldonium had no significant effect on blood glucose concentrations or on baseline cardiac function. However, hyperpolarized magnetic resonance revealed that meldonium treatment elevated pyruvate dehydrogenase flux by 3.1-fold and 1.2-fold in diabetic and control animals, respectively, suggesting an increase in cardiac glucose oxidation. Hyperpolarized magnetic resonance further demonstrated that meldonium reduced the normalized acetylcarnitine signal by 2.1-fold in both diabetic and control animals. The increase in pyruvate dehydrogenase flux in vivo was accompanied by an improvement in post-ischemic function ex vivo, as meldonium elevated the rate pressure product by 1.3-fold and 1.5-fold in the control and diabetic animals, respectively. In conclusion, meldonium improves in vivo pyruvate dehydrogenase flux in the diabetic heart, contributing to improved cardiac recovery after ischemia.


Assuntos
Diabetes Mellitus Experimental/complicações , Espectroscopia de Ressonância Magnética/métodos , Metilidrazinas/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Complexo Piruvato Desidrogenase/fisiologia , Animais , Glucose/metabolismo , Masculino , Metabolômica , Metilidrazinas/farmacologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Ratos , Ratos Wistar , Estreptozocina
9.
Diabetologia ; 63(10): 2205-2217, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32728894

RESUMO

AIMS/HYPOTHESIS: Treatment of vascular complications of diabetes remains inadequate. We reported that muscle pericytes (MPs) from limb muscles of vascular patients with diabetes mellitus display elevated levels of oxidative stress causing a dysfunctional phenotype. Here, we investigated whether treatment with dimethyl-2-oxoglutarate (DM-2OG), a tricarboxylic acid cycle metabolite with antioxidant properties, can restore a healthy metabolic and functional phenotype. METHODS: MPs were isolated from limb muscles of diabetes patients with vascular disease (D-MPs) and from non-diabetic control participants (ND-MPs). Metabolic status was assessed in untreated and DM-2OG-treated (1 mmol/l) cells using an extracellular flux analyser and anion-exchange chromatography-mass spectrometry (IC-MS/MS). Redox status was measured using commercial kits and IC-MS/MS, with antioxidant and metabolic enzyme expression assessed by quantitative RT-PCR and western blotting. Myogenic differentiation and proliferation and pericyte-endothelial interaction were assessed as functional readouts. RESULTS: D-MPs showed mitochondrial dysfunction, suppressed glycolytic activity and reduced reactive oxygen species-buffering capacity, but no suppression of antioxidant systems when compared with ND-MP controls. DM-2OG supplementation improved redox balance and mitochondrial function, without affecting glycolysis or antioxidant systems. Nonetheless, this was not enough for treated D-MPs to regain the level of proliferation and myogenic differentiation of ND-MPs. Interestingly, DM-2OG exerted a positive effect on pericyte-endothelial cell interaction in the co-culture angiogenesis assay, independent of the diabetic status. CONCLUSIONS/INTERPRETATION: These novel findings support the concept of using DM-2OG supplementation to improve pericyte redox balance and mitochondrial function, while concurrently allowing for enhanced pericyte-endothelial crosstalk. Such effects may help to prevent or slow down vasculopathy in skeletal muscles of people with diabetes. Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/farmacologia , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Adulto , Estudos de Casos e Controles , Técnicas de Cultura de Células , Feminino , Glicólise/efeitos dos fármacos , Humanos , Isquemia/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Pericitos/metabolismo , Doenças Vasculares Periféricas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Commun Biol ; 3(1): 247, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433536

RESUMO

Altered central carbon metabolism is a hallmark of many diseases including diabetes, obesity, heart disease and cancer. Identifying metabolic changes will open opportunities for better understanding aetiological processes and identifying new diagnostic, prognostic, and therapeutic targets. Comprehensive and robust analysis of primary metabolic pathways in cells, tissues and bio-fluids, remains technically challenging. We report on the development and validation of a highly reproducible and robust untargeted method using anion-exchange tandem mass spectrometry (IC-MS) that enables analysis of 431 metabolites, providing detailed coverage of central carbon metabolism. We apply the method in an untargeted, discovery-driven workflow to investigate the metabolic effects of isocitrate dehydrogenase 1 (IDH1) mutations in glioblastoma cells. IC-MS provides comprehensive coverage of central metabolic pathways revealing significant elevation of 2-hydroxyglutarate and depletion of 2-oxoglutarate. Further analysis of the data reveals depletion in additional metabolites including previously unrecognised changes in lysine and tryptophan metabolism.


Assuntos
Cromatografia por Troca Iônica , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Mutação , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Glioblastoma , Humanos , Redes e Vias Metabólicas
11.
Front Mol Biosci ; 7: 599332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33665206

RESUMO

In mammalian cells, cell cycle entry occurs in response to the correct stimuli and is promoted by the transcriptional activity of E2F family members. E2F proteins regulate the transcription of S phase cyclins and genes required for DNA replication, DNA repair, and apoptosis. The activity of E2F1, the archetypal and most heavily studied E2F family member, is tightly controlled by the DNA damage checkpoints to modulate cell cycle progression and initiate programmed cell death, when required. Altered tumor suppressor and oncogenic signaling pathways often result in direct or indirect interference with E2F1 regulation to ensure higher rates of cell proliferation independently of external cues. Despite a clear link between dysregulated E2F1 activity and cancer progression, literature on the contribution of E2F1 to DNA replication stress phenotypes is somewhat scarce. This review discusses how dysfunctional tumor suppressor and oncogenic signaling pathways promote the disruption of E2F1 transcription and hence of its transcriptional targets, and how such events have the potential to drive DNA replication stress. In addition to the involvement of E2F1 upstream of DNA replication stress, this manuscript also considers the role of E2F1 as a downstream effector of the response to this type of cellular stress. Lastly, the review introduces some reflections on how E2F1 activity is integrated with checkpoint control through post-translational regulation, and proposes an exploitable tumor weakness based on this axis.

12.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013688

RESUMO

Pulmonary arterial hypertension (PAH) results in hypertrophic remodeling of the right ventricle (RV) to overcome increased pulmonary pressure. This increases the O2 consumption of the myocardium, and without a concomitant increase in energy generation, a mismatch with demand may occur. Eventually, RV function can no longer be sustained, and RV failure occurs. Beta-adrenergic blockers (BB) are thought to improve survival in left heart failure, in part by reducing energy expenditure and hypertrophy, however they are not currently a therapy for PAH. The monocrotaline (MCT) rat model of PAH was used to investigate the consequence of RV failure on myocardial oxygenation and mitochondrial function. A second group of MCT rats was treated daily with the beta-1 blocker metoprolol (MCT + BB). Histology confirmed reduced capillary density and increased capillary supply area without indications of capillary rarefaction in MCT rats. A computer model of O2 flux was applied to the experimentally recorded capillary locations and predicted a reduction in mean tissue PO2 in MCT rats. The fraction of hypoxic tissue (defined as PO2 < 0.5 mmHg) was reduced following beta-1 blocker (BB) treatment. The functionality of the creatine kinase (CK) energy shuttle was measured in permeabilized RV myocytes by sequential ADP titrations in the presence and absence of creatine. Creatine significantly decreased the KmADP in cells from saline-injected control (CON) rats, but not MCT rats. The difference in KmADP with or without creatine was not different in MCT + BB cells compared to CON or MCT cells. Improved myocardial energetics could contribute to improved survival of PAH with chronic BB treatment.


Assuntos
Metabolismo Energético , Disfunção Ventricular Direita/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Creatina Quinase/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monocrotalina/metabolismo , Monocrotalina/farmacologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Oxigênio/metabolismo , Ratos
13.
Adv Physiol Educ ; 42(3): 454-461, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29972055

RESUMO

We describe a simple, cost-effective experiment to demonstrate cardiovascular integration of heart rate and blood pressure to accommodate the environmental and dietary factors of gravity and caffeine. Specific learning objectives associated with this include understanding the effects of posture on blood pressure and heart rate, coupled with the role of caffeine in modifying this response. Inclusion of ECG measurements, coupled with heart rate variability analysis, added a demonstration of the contribution made by the autonomic nervous system under these conditions. We clearly demonstrate that the cardiac work, estimated as rate-pressure product, necessary to undertake the transition from supine to standing, is fixed for a given group of subjects. However, the individual contribution of heart rate and systolic pressure to the cardiac workload is subject to the external factors of gravity and caffeine. Such an activity also demonstrates additional benefits, including unstructured teaching opportunities to augment classroom learning associated with integrative physiology and also the discussion of ethical issues with regard to human experimentation.


Assuntos
Pressão Sanguínea/fisiologia , Cafeína/administração & dosagem , Dieta , Gravitação , Frequência Cardíaca/fisiologia , Pressorreceptores/fisiologia , Adolescente , Adulto , Pressão Sanguínea/efeitos dos fármacos , Dieta/métodos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Fisiologia/educação , Postura/fisiologia , Adulto Jovem
14.
Clin Exp Pharmacol Physiol ; 45(11): 1106-1117, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30003580

RESUMO

Orthostatic stress triggers a response to maintain cerebral perfusion and prevent syncope. Given the hypotensive effects of inorganic nitrate this response to orthostasis may be altered by acute supplementation with inorganic nitrate and modified by ethnic origin. Caucasian and SE Asian (n = 30 for both), were recruited and subjected to an 'active stand test' and brachial artery blood pressure (BP), digit blood flow and ECG were recorded. Following inorganic nitrate supplementation, (10 mg/kg body mass) the tests were repeated. For both Caucasian and SE Asians transition to standing increased diastolic pressure (DP) and heart rate (HR) (P < 0.001 for both) and by calculation increased rate-pressure product (P < 0.001) and decreased pulse pressure (P < 0.01 for both) indicative of decreased ventricular filling. Nitrate supplementation decreased both DP (P < 0.001) and HR (P < 0.001). Assessment of HR variability suggested sympathetic nerve activity, was higher throughout in Caucasians (P < 0.05) coupled with higher parasympathetic tone (P < 0.01). Nitrate had no effect on cardiac autonomic nerve activity, as estimated using HR variability, for supine or standing subjects. The tachycardia and hypertension associated with orthostatic stress were preserved in both Caucasian and SE Asian subjects, however, we highlight possible differences in autonomic nervous system activity between Caucasians and SE Asians. SE Asians are resistant to the hypotensive effects of inorganic nitrate supplementation suggesting the absence of a crucial mechanism for activation of the nitrate-nitrite-nitric oxide system.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Etnicidade , Frequência Cardíaca/efeitos dos fármacos , Nitratos/farmacologia , Eletrocardiografia , Feminino , Humanos , Masculino , Adulto Jovem
15.
Eur J Appl Physiol ; 116(9): 1651-61, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27333912

RESUMO

PURPOSE: Both inorganic nitrate and citrulline are known to alter the arginine-nitric oxide-nitrate system to increase the bioavailability of nitric oxide with potential benefits in the treatment of heart failure. However, their effects on cardiac electrical activity, vascular compliance and peripheral conductance are less well understood. This study examined the effect of nitrate and citrulline on cardiac electrical activity and blood flow. METHODS: Young adult subjects (n = 12) were recruited to investigate the effects of acute oral nitrate consumption (8 mg/kg) and chronic citrulline consumption (3 g/day) on cardiac electrical activity measured by ECG recording and blood pressure. Blood flow and vascular compliance were measured by IR-plethysmography at the thumb and the hallux. RESULTS: Nitrate (p < 0.05) and citrulline (p < 0.01) consumption both decreased diastolic blood pressure but had no effect on either pulse pressure or rate-pressure product (NS for both). Citrulline also decreased systolic pressure (p < 0.01). Nitrate and citrulline both decreased vascular compliance (p < 0.05 for both) prior to isometric grip exercise, but this was increased for nitrate following exercise (NS). Citrulline decreased R-R interval 9 % (p < 0.05) at rest and increased heart rate (p < 0.05) in addition to significantly decreasing pulse transit duration (6 %; p < 0.05). QRS duration was also decreased by 5 % for citrulline (p < 0.05) with the reduction in R-R interval. CONCLUSION: Both nitrate and citrulline supplementation decreased vascular tone at rest but citrulline also altered sympathovagal balance to increase sympathetic tone. We suggest that both oral nitrate and citrulline may be suitable adjuvants for patients with heart failure to improve peripheral tissue oxygenation.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Citrulina/administração & dosagem , Frequência Cardíaca/fisiologia , Nitratos/administração & dosagem , Vasodilatação/fisiologia , Administração Oral , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/administração & dosagem , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Resultado do Tratamento , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Vasodilatação/efeitos dos fármacos
16.
Biochim Biophys Acta ; 1861(10): 1481-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26979759

RESUMO

Triacylglycerols (TAGs) constitute the main energy storage resource in mammals, by virtue of their high energy density. This in turn is a function of their highly reduced state and hydrophobicity. Limited water solubility, however, imposes specific requirements for delivery and uptake mechanisms on TAG-utilising tissues, including the heart, as well as intracellular disposition. TAGs constitute potentially the major energy supply for working myocardium, both through blood-borne provision and as intracellular TAG within lipid droplets, but also provide the heart with fatty acids (FAs) which the myocardium cannot itself synthesise but are required for glycerolipid derivatives with (non-energetic) functions, including membrane phospholipids and lipid signalling molecules. Furthermore they serve to buffer potentially toxic amphipathic fatty acid derivatives. Intracellular handling and disposition of TAGs and their FA and glycerolipid derivatives similarly requires dedicated mechanisms in view of their hydrophobic character. Dysregulation of utilisation can result in inadequate energy provision, accumulation of TAG and/or esterified species, and these may be responsible for significant cardiac dysfunction in a variety of disease states. This review will focus on the role of TAG in myocardial energy provision, by providing FAs from exogenous and endogenous TAG sources for mitochondrial oxidation and ATP production, and how this can change in disease and impact on cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Metabolismo Energético , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Animais , Humanos , Espaço Intracelular/metabolismo , Modelos Biológicos
17.
PLoS One ; 10(6): e0127424, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030353

RESUMO

Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia.


Assuntos
Hipóxia/metabolismo , Miocárdio/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Capilares/metabolismo , Feminino , Glucose/metabolismo , Glicólise/fisiologia , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar
18.
Biochim Biophys Acta ; 1850(4): 681-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25529297

RESUMO

BACKGROUND: The relative importance of arteriole supply or ability to switch between substrates to preserve cardiac performance is currently unclear, but may be critically important in conditions such as diabetes. METHODS: Metabolism of substrates was measured before and after infusion of polystyrene microspheres in the perfused working heart to mimic random capillary loss due to microvascular disease. The effect of acute loss of functional capillary supply on palmitate and glucose metabolism together with function was quantified, and theoretical tissue oxygen distribution calculated from histological samples and ventricular VO(2) estimated. RESULTS: Microsphere infusion led to a dose-dependent decrease in rate-pressure product (RPP) and oxygen consumption (P<0.001). Microsphere infusion also increased work/unit oxygen consumption of hearts ('efficiency') by 25% (P<0.01). When corrected for cardiac work palmitate oxidation remained tightly coupled to very low workloads (RPP<2500 mmHg/min), illustrating a high degree of metabolic control. Arteriole occlusion by microspheres decreased the density of patent capillaries (P<0.001) and correspondingly increased the average capillary supply area by 40% (P<0.01). Calculated rates of oxygen consumption declined from 16.6±7.2 ml/100 ml/min to 12.4±9 ml/100 ml/min following arteriole occlusion, coupled with increases in size of regions of myocardial hypoxia (Control=22.0% vs. Microspheres=42.2%). CONCLUSIONS: Cardiac mechanical performance is very sensitive to arteriolar blockade, but metabolite switching from fatty acid to glucose utilisation may also support cardiac function in regions of declining PO(2). GENERAL SIGNIFICANCE: Preserving functional capillary supply may be critical for maintenance of cardiac function when metabolic flexibility is lost, as in diabetes.


Assuntos
Capilares/fisiologia , Miocárdio/metabolismo , Acetilcoenzima A/metabolismo , Animais , Circulação Coronária/fisiologia , Glucose/metabolismo , Masculino , Microesferas , Consumo de Oxigênio , Palmitatos/metabolismo , Ratos , Ratos Wistar
19.
J Physiol ; 592(20): 4493-506, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25063821

RESUMO

The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge.


Assuntos
Corpo Carotídeo/metabolismo , Glucose/deficiência , Glicogênio/metabolismo , Animais , Corpo Carotídeo/fisiologia , Corpo Carotídeo/ultraestrutura , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Glucose/metabolismo , Glicogenólise , Glicólise , Masculino , Ratos , Ratos Wistar
20.
Artigo em Inglês | MEDLINE | ID: mdl-23726940

RESUMO

The ability to regulate vascular tone is an essential cardiovascular control mechanism, with nitric oxide (NO) assumed to be a ubiquitous smooth muscle relaxant. However, the literature contains reports of vasoconstrictor, vasodilator and no response to nitroergic stimulation in non-mammalian vertebrates. We examined functional (branchial artery myography), structural (immunohistochemistry of skeletal muscle), proteomic (Western analysis) and genomic (RT-PCR, sequence orthologues, syntenic analysis) evidence for endothelial NO synthase (NOS3) in model and non-model fish species. A variety of nitrodilators failed to elicit any changes in vascular tone, although a dilatation to exogenous cyclic GMP was noted. NOS3 antibody staining does not localise to endothelial markers in cryosections, and gives rise to non-specific staining of Western blots. Abundant NOS2 mRNA was found in all species but NOS3 was not found in any fish, while putative orthologues are not flanked by similar genes to NOS3 in humans. We conclude that NOS3 does not exist in fish, and that previous reports of its presence may reflect use of antibodies raised against mammalian epitopes.


Assuntos
Peixes/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Western Blotting , Loci Gênicos/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Imuno-Histoquímica , Funções Verossimilhança , Anotação de Sequência Molecular , Músculos/citologia , Músculos/metabolismo , Miografia , Óxido Nítrico Sintase Tipo III/genética , Filogenia , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...