Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298941

RESUMO

Clinical research aiming at objectively identifying and characterizing diseases via clinical observations and biological and radiological findings is a critical initial research step when establishing objective diagnostic criteria and treatments. Failure to first define such diagnostic criteria may lead research on pathogenesis and etiology to serious confounding biases and erroneous medical interpretations. This is particularly the case for electrohypersensitivity (EHS) and more particularly for the so-called "provocation tests", which do not investigate the causal origin of EHS but rather the EHS-associated particular environmental intolerance state with hypersensitivity to man-made electromagnetic fields (EMF). However, because those tests depend on multiple EMF-associated physical and biological parameters and have been conducted in patients without having first defined EHS objectively and/or endpoints adequately, they cannot presently be considered to be valid pathogenesis research methodologies. Consequently, the negative results obtained by these tests do not preclude a role of EMF exposure as a symptomatic trigger in EHS patients. Moreover, there is no proof that EHS symptoms or EHS itself are caused by psychosomatic or nocebo effects. This international consensus report pleads for the acknowledgement of EHS as a distinct neuropathological disorder and for its inclusion in the WHO International Classification of Diseases.


Assuntos
Biomarcadores/metabolismo , Hipersensibilidade/metabolismo , Sensibilidade Química Múltipla/metabolismo , Animais , Consenso , Diagnóstico por Imagem/métodos , Testes Diagnósticos de Rotina/métodos , Campos Eletromagnéticos , Humanos , Doenças do Sistema Nervoso/metabolismo
3.
Environ Pollut ; 221: 501-505, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27903411

RESUMO

This paper attempts to resolve the debate about whether non-ionizing radiation (NIR) can cause cancer-a debate that has been ongoing for decades. The rationale, put forward mostly by physicists and accepted by many health agencies, is that, "since NIR does not have enough energy to dislodge electrons, it is unable to cause cancer." This argument is based on a flawed assumption and uses the model of ionizing radiation (IR) to explain NIR, which is inappropriate. Evidence of free-radical damage has been repeatedly documented among humans, animals, plants and microorganisms for both extremely low frequency (ELF) electromagnetic fields (EMF) and for radio frequency (RF) radiation, neither of which is ionizing. While IR directly damages DNA, NIR interferes with the oxidative repair mechanisms resulting in oxidative stress, damage to cellular components including DNA, and damage to cellular processes leading to cancer. Furthermore, free-radical damage explains the increased cancer risks associated with mobile phone use, occupational exposure to NIR (ELF EMF and RFR), and residential exposure to power lines and RF transmitters including mobile phones, cell phone base stations, broadcast antennas, and radar installations.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Neoplasias/etiologia , Radiação não Ionizante , Animais , Dano ao DNA , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Radicais Livres/metabolismo , Habitação , Humanos , Modelos Teóricos , Estresse Oxidativo
4.
Electromagn Biol Med ; 35(4): 321-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27053339

RESUMO

Ground current commonly referred to as "stray voltage" has been an issue on dairy farms since electricity was first brought to rural America. Equipment that generates high-frequency voltage transients on electrical wires combined with a multigrounded (electrical distribution) system and inadequate neutral returns all contribute to ground current. Despite decades of problems, we are no closer to resolving this issue, in part, due to three misconceptions that are addressed in this study. Misconception 1. The current standard of 1 V at cow contact is adequate to protect dairy cows; Misconception 2. Frequencies higher than 60 Hz do not need to be considered; and Misconception 3. All sources of ground current originate on the farm that has a ground current problem. This case study of a Wisconsin dairy farm documents, 1. how to establish permanent monitoring of ground current (step potential) on a dairy farm; 2. how to determine and remediate both on-farm and off-farm sources contributing to step potential; 3. which step-potential metrics relate to cow comfort and milk production; and 4. how these metrics relate to established standards. On-farm sources include lighting, variable speed frequency drives on motors, radio frequency identification system and off-farm sources are due to a poor primary neutral return on the utility side of the distribution system. A step-potential threshold of 1 V root mean square (RMS) at 60 Hz is inadequate to protect dairy cows as decreases of a few mV peak-peak at higher frequencies increases milk production, reduces milking time and improves cow comfort.


Assuntos
Indústria de Laticínios , Condutividade Elétrica , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Fazendas , Animais , Bovinos , Leite , Wisconsin
5.
Rev Environ Health ; 28(2-3): 75-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24192494

RESUMO

Exposure to electrosmog generated by electric, electronic, and wireless technology is accelerating to the point that a portion of the population is experiencing adverse reactions when they are exposed. The symptoms of electrohypersensitivity (EHS), best described as rapid aging syndrome, experienced by adults and children resemble symptoms experienced by radar operators in the 1940s to the 1960s and are well described in the literature. An increasingly common response includes clumping (rouleau formation) of the red blood cells, heart palpitations, pain or pressure in the chest accompanied by anxiety, and an upregulation of the sympathetic nervous system coincident with a downregulation of the parasympathetic nervous system typical of the "fight-or-flight" response. Provocation studies presented in this article demonstrate that the response to electrosmog is physiologic and not psychosomatic. Those who experience prolonged and severe EHS may develop psychologic problems as a consequence of their inability to work, their limited ability to travel in our highly technologic environment, and the social stigma that their symptoms are imagined rather than real.


Assuntos
Sistema Nervoso Autônomo , Poluentes Ambientais/toxicidade , Frequência Cardíaca , Tecnologia sem Fio , Ansiedade , Comportamento , Humanos
6.
Electromagn Biol Med ; 32(2): 253-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23675629

RESUMO

This is a replication of a study that we previously conducted in Colorado with 25 subjects designed to test the effect of electromagnetic radiation generated by the base station of a cordless phone on heart rate variability (HRV). In this study, we analyzed the response of 69 subjects between the ages of 26 and 80 in both Canada and the USA. Subjects were exposed to radiation for 3-min intervals generated by a 2.4-GHz cordless phone base station (3-8 µW/cm²). A few participants had a severe reaction to the radiation with an increase in heart rate and altered HRV indicative of an alarm response to stress. Based on the HRV analyses of the 69 subjects, 7% were classified as being "moderately to very" sensitive, 29% were "little to moderately" sensitive, 30% were "not to little" sensitive and 6% were "unknown". These results are not psychosomatic and are not due to electromagnetic interference. Twenty-five percent of the subjects' self-proclaimed sensitivity corresponded to that based on the HRV analysis, while 32% overestimated their sensitivity and 42% did not know whether or not they were electrically sensitive. Of the 39 participants who claimed to experience some electrical hypersensitivity, 36% claimed they also reacted to a cordless phone and experienced heart symptoms and, of these, 64% were classified as having some degree of electrohypersensitivity (EHS) based on their HRV response. Novel findings include documentation of a delayed response to radiation. Orthostatic HRV testing combined with provocation testing may provide a diagnostic tool for some sufferers of EHS when they are exposed to electromagnetic emitting devices. The protocol used underestimates reaction to electromagnetic radiation for those who have a delayed autonomic nervous system reaction and it may under diagnose those who have adrenal exhaustion as their ability to mount a response to a stressor is diminished.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Frequência Cardíaca/efeitos da radiação , Telefone/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
7.
Sci Total Environ ; 402(2-3): 157-62, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18556048

RESUMO

BACKGROUND: Poor power quality (dirty electricity) is ubiquitous especially in schools with fluorescent lights and computers. Previous studies have shown a relationship between power quality and student behavior/teacher health. OBJECTIVES: The purpose of this study is to determine the ability of power line filters to reduce dirty electricity in a school environment and to document changes in health and behavior among teachers and students. METHOD: We installed Graham Stetzer filters and dummy filters and measured power quality in three Minnesota Schools. Teachers completed a daily questionnaire regarding their health and the behavior of their students for an 8-week period. Teachers were unaware of which filters were installed at any one time (single blind study). RESULTS: Dirty electricity was reduced by more than 90% in the three schools and during this period teacher health improved as did student behavior in the middle/elementary schools. Headaches, general weakness, dry eyes/mouth, facial flushing, asthma, skin irritations, overall mood including depression and anxiety improved significantly among staff. Of the 44 teachers who participated 64% were better, 30% were worse, and 6% did not change. Behavior of high school students did not improve but elementary/middle school students were more active in class; more responsive, more focused; had fewer health complaints; and had a better overall learning experience. CONCLUSIONS: Dirty electricity in schools may be adversely affecting wellbeing of teachers and behavior of their students, especially younger students in middle and elementary school. Power line filters improve power quality and may also protect those who are sensitive to this energy. Work on electric and magnetic field metrics with and without Stetzer filters urgently needs to be carried out to determine just what characteristics of the dirty electricity may be interacting with the people.


Assuntos
Comportamento Infantil , Fontes de Energia Elétrica , Docentes , Estudantes , Adolescente , Criança , Humanos , Minnesota , Placebos , Método Simples-Cego , Inquéritos e Questionários
8.
Electromagn Biol Med ; 27(2): 135-46, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18568931

RESUMO

Transient electromagnetic fields (dirty electricity), in the kilohertz range on electrical wiring, may be contributing to elevated blood sugar levels among diabetics and pre-diabetics. By closely following plasma glucose levels in four Type 1 and Type 2 diabetics, we find that they responded directly to the amount of dirty electricity in their environment. In an electromagnetically clean environment, Type 1 diabetics require less insulin and Type 2 diabetics have lower levels of plasma glucose. Dirty electricity, generated by electronic equipment and wireless devices, is ubiquitous in the environment. Exercise on a treadmill, which produces dirty electricity, increases plasma glucose. These findings may explain why brittle diabetics have difficulty regulating blood sugar. Based on estimates of people who suffer from symptoms of electrical hypersensitivity (3-35%), as many as 5-60 million diabetics worldwide may be affected. Exposure to electromagnetic pollution in its various forms may account for higher plasma glucose levels and may contribute to the misdiagnosis of diabetes. Reducing exposure to electromagnetic pollution by avoidance or with specially designed GS filters may enable some diabetics to better regulate their blood sugar with less medication and borderline or pre-diabetics to remain non diabetic longer.


Assuntos
Glicemia/análise , Glicemia/efeitos da radiação , Diabetes Mellitus Tipo 1/metabolismo , Eletricidade , Poluição Ambiental , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doses de Radiação
9.
Electromagn Biol Med ; 25(4): 259-68, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17178585

RESUMO

Dirty electricity is a ubiquitous pollutant. It flows along wires and radiates from them and involves both extremely low frequency electromagnetic fields and radio frequency radiation. Until recently, dirty electricity has been largely ignored by the scientific community. Recent inventions of metering and filter equipment provide scientists with the tools to measure and reduce dirty electricity on electrical wires. Several case studies and anecdotal reports are presented. Graham/Stetzer (GS) filters have been installed in schools with sick building syndrome and both staff and students reported improved health and more energy. The number of students needing inhalers for asthma was reduced in one school and student behavior associated with ADD/ADHD improved in another school. Blood sugar levels for some diabetics respond to the amount of dirty electricity in their environment. Type 1 diabetics require less insulin and Type 2 diabetics have lower blood sugar levels in an electromagnetically clean environment. Individuals diagnosed with multiple sclerosis have better balance and fewer tremors. Those requiring a cane walked unassisted within a few days to weeks after GS filters were installed in their home. Several disorders, including asthma, ADD/ADHD, diabetes, multiple sclerosis, chronic fatigue, fibromyalgia, are increasing at an alarming rate, as is electromagnetic pollution in the form of dirty electricity, ground current, and radio frequency radiation from wireless devices. The connection between electromagnetic pollution and these disorders needs to be investigated and the percentage of people sensitive to this form of energy needs to be determined.


Assuntos
Diabetes Mellitus/etiologia , Campos Eletromagnéticos/efeitos adversos , Esclerose Múltipla/etiologia , Lesões por Radiação/etiologia , Adulto , Idoso , Eletricidade , Fenômenos Eletromagnéticos , Exposição Ambiental , Doença Ambiental , Feminino , Humanos , Hipersensibilidade , Masculino , Pessoa de Meia-Idade , Ondas de Rádio
10.
Sci Total Environ ; 298(1-3): 183-206, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12449337

RESUMO

Electric and magnetic fields were measured during the summer of 1998 in south-central Ontario within the business district of 60 communities, ranging in size from 1000 to 2.3 million people. The mean magnetic flux density for the 60 communities was 5.8 mG. Communities with larger populations generally had higher magnetic flux densities than those with smaller populations. Communities with populations above 100,000, between 50,000 and 100,000, between 10,000 and 50,000, and less than 10,000 had mean magnetic flux densities of 14, 7, 4 and 2.4 mG, respectively. The city of Kingston, population 123,000, had the highest mean magnetic flux density (47 mG) while Burks Falls, population 1000, had the lowest (0.8 mG). More than 90% of the sites measured in Kingston, Toronto, Oshawa, London, Pickering Village and Bellville were above 2 mG, the lower limit associated with childhood cancers. In only one community (Burks Falls) were all of the measurements in the business district below 2 mG. Diurnal variations were detected in the magnetic field (but not in the electric field) with highest fields measured during business hours. For electric fields, the mean for the 60 communities was 3.2 V/m. Electric fields were generally low. Eight communities had maximum field strengths above 30 V/m and all of these were associated with overhead wires. In larger communities with underground distribution lines the electric fields were low or undetectable (<0.1 V/m) but the magnetic fields were often high. High electric fields were generally associated with low magnetic fields but the relationship was not sufficiently robust to enable prediction of one from the other. Data for the business district measured during business hours appear to be relatively consistent for both electric field and magnetic flux density over a two-year period. Two classification schemes that can be used independently or in combination are proposed to facilitate community comparisons. One is based on the average intensity of the fields (FI) and the other on the percentage of measurements that exceed a critical limit (CL) that has biological significance. The critical value of 5 V/m is proposed for electric fields and 2 mG for magnetic fields. Both classification schemes use the traffic light analogy for exposure (green-low, amber-medium, red-high exposure) with an additional category (black) for very high exposure. This classification system facilitates information transfer and can easily be understood and used by the public, public utilities, policy makers, and those wanting to practice prudent avoidance.


Assuntos
Campos Eletromagnéticos , Monitoramento Ambiental , Cidades , Fontes de Energia Elétrica , Meio Ambiente , Indústrias , Ontário , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...