Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 224(3): 1009-1019, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30560374

RESUMO

Anterior cingulate cortex (ACC) and midcingulate cortex (MCC) have been implicated in the regulation of aggressive behaviour. For instance, patients with conduct disorder (CD) show increased levels of aggression accompanied by changes in ACC and MCC volume. However, accounts of ACC/MCC changes in CD patients have been conflicting, likely due to the heterogeneity of the studied populations. Here, we address these discrepancies by studying volumetric changes of ACC/MCC in the BALB/cJ mouse, a model of aggression, compared to an age- and gender-matched control group of BALB/cByJ mice. We quantified aggression in BALB/cJ and BALB/cByJ mice using the resident-intruder test, and related this to volumetric measures of ACC/MCC based on Nissl-stained coronal brain slices of the same animals. We demonstrate that BALB/cJ behave consistently more aggressively (shorter attack latencies, more frequent attacks, anti-social biting) than the control group, while at the same time showing an increased volume of ACC and a decreased volume of MCC. Differences in ACC and MCC volume jointly predicted a high amount of variance in aggressive behaviour, while regression with only one predictor had a poor fit. This suggests that, beyond their individual contributions, the relationship between ACC and MCC plays an important role in regulating aggressive behaviour. Finally, we show the importance of switching from the classical rodent anatomical definition of ACC as cingulate area 2 and 1 to a definition that includes the MCC and is directly homologous to higher mammalian species: clear behaviour-related differences in ACC/MCC anatomy were only observed using the homologous definition.


Assuntos
Agressão , Mapeamento Encefálico , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/fisiologia , Agressão/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Valor Preditivo dos Testes , Tempo de Reação/genética , Especificidade da Espécie
2.
Sci Rep ; 8(1): 7710, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769564

RESUMO

We designed a method to quantify mice visual function by measuring reflexive opto-locomotor responses. Mice were placed on a Styrofoam ball at the center of a large dome on the inside of which we projected moving random dot patterns. Because we fixed the heads of the mice in space and the ball was floating on pressurized air, locomotion of the mice was translated to rotation of the ball, which we registered. Sudden onsets of rightward or leftward moving patterns caused the mice to reflexively change their running direction. We quantified the opto-locomotor responses to different pattern speeds, luminance contrasts, and dot sizes. We show that the method is fast and reliable and the magnitude of the reflex is stable within sessions. We conclude that this opto-locomotor reflex method is suitable to quantify visual function in mice.


Assuntos
Discriminação Psicológica/fisiologia , Percepção de Forma/fisiologia , Locomoção/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...