Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Vaccines (Basel) ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543881

RESUMO

Data on immune responses following COVID-19 booster vaccinations and subsequent infections in the immunocompromised are limited. We studied antibody responses after the fourth dose and subsequent infections to define patient groups benefiting most from boosters. Fourth vaccine (booster) doses were, in Finland, first recommended for severely immunocompromised individuals, whom we invited to participate in our study in 2022. We assessed spike protein-specific IgG and neutralizing antibodies (NAb) against the ancestral and Omicron BA.1 strains one month after the fourth dose from 488 adult participants and compared them to the levels of 35 healthy controls after three doses. We used Bayesian generalized linear modeling to assess factors explaining antibody levels and assessed vaccine-induced and hybrid immunity six months after the last vaccine dose. Chronic kidney disease (CKD) and immunosuppressive therapy (IT) were identified as factors explaining sub-optimal antibody responses. The proportion of participants with a normal antibody response and NAbs was significantly lower regarding CKD patients compared to the controls. By the 6-month sampling point, one-third of the participants became infected (documented by serology and/or molecular tests), which notably enhanced antibody levels in most immunocompromised participants. Impaired antibody responses, especially NAbs against the Omicron lineage, suggest limited protection in individuals with CKD and highlight the need for alternative pharmaceutical preventive strategies. Vaccination strategies should take into account the development of robust hybrid immunity responses also among the immunocompromised.

2.
Commun Med (Lond) ; 4(1): 28, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396065

RESUMO

BACKGROUND: Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS: We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS: In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS: Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.


During the COVID-19 pandemic, mass vaccination efforts against SARS-CoV-2 infection have provided effective protection against the virus and helped reduce the severity of symptoms in infected individuals. However, it is not well established whether the existing vaccines can provide the same protection against new and emerging SARS-CoV-2 variants that develop over time as the virus evolves. In this study, we tested combinations of three-dose COVID-19 vaccines given in random order to protect against all SARS-CoV-2 variants in circulation including the newest being Omicron variants. We demonstrate that more than half of the population who received the three-dose vaccine combinations were infected with SARS-CoV-2 Omicron variants after receiving the last vaccine dose. These findings indicate the need to develop new vaccine candidates against emerging SARS-CoV-2 variants.

3.
J Virol Methods ; 322: 114825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778539

RESUMO

One consequence of the ongoing coronavirus disease pandemic was the rapid development of both in-house and commercial serological assays detecting anti-SARS-CoV-2 antibodies, in an effort to reliably detect acute and past SARS-CoV-2 infections. It is crucial to evaluate the quality of these serological tests and consequently the sero-epidemiological studies that are performed with the respective tests. Here, we describe the set-up and results of a comparative study, in which a laboratory contracted by the European Centre for Disease Prevention and Control offered a centralised service to EU/EEA Member and pre-accession Member States to test representative serum specimens with known serological results, with the gold standard technique (virus neutralisation tests) to determine the presence of neutralising antibodies. Laboratories from 12 European countries shared 719 serum specimens with the contractor laboratory. We found that in-house serological tests detecting neutralising antibodies showed the highest percent agreement, both positive and negative, with the virus neutralisation test results. Despite extensive differences in virus neutralisation protocols neutralisation titres showed a strong correlation. From the commercial assays, the best positive percent agreement was found for SARS-CoV-2 IgG (sCOVG) (Siemens - Atellica IM Analyzer). Despite lower positive percent agreement of LIAISON SARS-CoV-2 TrimericS IgG kit (Diasorin Inc.), the obtained results showed relatively good correlation with neutralisation titres. The set-up of this study allowed for high comparability between laboratories and enabled laboratories that do not have the capacity or capability to perform VNTs themselves. Given the variety of in-house protocols detecting SARS-CoV-2 specific neutralising antibodies, including the virus strain, it could be of interest to select reference isolates for SARS-CoV-2 diagnostic to be made available for interested EU Member States and pre-accession countries.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Anticorpos Antivirais , Europa (Continente) , Imunoglobulina G , Anticorpos Neutralizantes
4.
Nat Commun ; 14(1): 1637, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964125

RESUMO

The emergence of increasingly immunoevasive SARS-CoV-2 variants emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Intranasal administration of neutralizing antibodies has shown encouraging protective potential but there remains a need for SARS-CoV-2 blocking agents that are less vulnerable to mutational viral variation and more economical to produce in large scale. Here we describe TriSb92, a highly manufacturable and stable trimeric antibody-mimetic sherpabody targeted against a conserved region of the viral spike glycoprotein. TriSb92 potently neutralizes SARS-CoV-2, including the latest Omicron variants like BF.7, XBB, and BQ.1.1. In female Balb/c mice intranasal administration of just 5 or 50 micrograms of TriSb92 as early as 8 h before but also 4 h after SARS-CoV-2 challenge can protect from infection. Cryo-EM and biochemical studies reveal triggering of a conformational shift in the spike trimer as the inhibitory mechanism of TriSb92. The potency and robust biochemical properties of TriSb92 together with its resistance against viral sequence evolution suggest that TriSb92 could be useful as a nasal spray for protecting susceptible individuals from SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Camundongos , Humanos , Administração Intranasal , COVID-19/prevenção & controle , Pandemias , Anticorpos Neutralizantes , Camundongos Endogâmicos BALB C , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
5.
Front Immunol ; 14: 1099246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756112

RESUMO

Introduction: The prime-boost COVID-19 mRNA vaccination strategy has proven to be effective against severe COVID-19 disease and death. However, concerns have been raised due to decreasing neutralizing antibody levels after COVID-19 vaccination and due to the emergence of new immuno-evasive SARS-CoV-2 variants that may require additional booster vaccinations. Methods: In this study, we analyzed the humoral and cell-mediated immune responses against the Omicron BA.1 and BA.2 subvariants in Finnish healthcare workers (HCWs) vaccinated with three doses of COVID-19 mRNA vaccines. We used enzyme immunoassay and microneutralization test to analyze the levels of SARS-CoV-2 specific IgG antibodies in the sera of the vaccinees and the in vitro neutralization capacity of the sera. Activation induced marker assay together with flow cytometry and extracellular cytokine analysis was used to determine responses in SARS-CoV-2 spike protein stimulated PBMCs. Results: Here we show that within the HCWs, the third mRNA vaccine dose recalls both humoral and T cell-mediated immune responses and induces high levels of neutralizing antibodies against Omicron BA.1 and BA.2 variants. Three weeks after the third vaccine dose, SARS-CoV-2 wild type spike protein-specific CD4+ and CD8+ T cells are observed in 82% and 71% of HCWs, respectively, and the T cells cross-recognize both Omicron BA.1 and BA.2 spike peptides. Although the levels of neutralizing antibodies against Omicron BA.1 and BA.2 decline 2.5 to 3.8-fold three months after the third dose, memory CD4+ T cell responses are maintained for at least eight months post the second dose and three months post the third vaccine dose. Discussion: We show that after the administration of the third mRNA vaccine dose the levels of both humoral and cell-mediated immune responses are effectively activated, and the levels of the spike-specific antibodies are further elevated compared to the levels after the second vaccine dose. Even though at three months after the third vaccine dose antibody levels in sera decrease at a similar rate as after the second vaccine dose, the levels of spike-specific CD4+ and CD8+ T cells remain relatively stable. Additionally, the T cells retain efficiency in cross-recognizing spike protein peptide pools derived from Omicron BA.1 and BA.2 subvariants. Altogether our results suggest durable cellmediated immunity and protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Open Forum Infect Dis ; 9(12): ofac625, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519113

RESUMO

Background: Previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primes the immune system; thus individuals who have recovered from infection have enhanced immune responses to subsequent vaccination (hybrid immunity). However, it remains unclear how well hybrid immunity induced by severe or mild infection can cross-neutralize emerging variants. We aimed to compare the strength and breadth of antibody responses in vaccinated recovered and uninfected subjects. Methods: We measured spike-specific immunoglobulin (Ig)G and neutralizing antibodies (NAbs) from vaccinated subjects including 320 with hybrid immunity and 20 without previous infection. From 29 subjects with a previous severe or mild infection, we also measured NAb responses against Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529/BA.1) variants following vaccination. Results: A single vaccine dose induced 2-fold higher anti-spike IgG concentrations and up to 4-fold higher neutralizing potency of antibodies in subjects with a previous infection compared with vaccinated subjects without a previous infection. Hybrid immunity was more enhanced after a severe than a mild infection, with sequentially decreasing NAb titers against Alpha, Beta, Delta, and Omicron variants. We found similar IgG concentrations in subjects with a previous infection after 1 or 2 vaccine doses. Conclusions: Hybrid immunity induced strong IgG responses, particularly after severe infection. However, the NAb titers were low against heterologous variants, especially against Omicron.

7.
Front Med (Lausanne) ; 9: 876532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966873

RESUMO

Background: Household transmission studies offer the opportunity to assess both secondary attack rate (SAR) and persistence of SARS-CoV-2 antibodies over time. Methods: In Spring 2020, we invited confirmed COVID-19 cases and their household members to four visits, where we collected nasopharyngeal and serum samples over 28 days after index case onset. We calculated SAR based on the presence of SARS-CoV-2 neutralizing antibodies (NAb) and assessed the persistence of NAb and IgG antibodies (Ab) against SARS-CoV-2 spike glycoprotein and nucleoprotein. Results: SAR was 45% (39/87), including 35 symptomatic secondary cases. During the initial 28-day follow-up, 62% (80/129) of participants developed NAb. Of those that seroconverted, 90% (63/70), 85% (63/74), and 78% (45/58) still had NAb to early B-lineage SARS-CoV-2 3, 6, and 12 months after the onset of the index case. Anti-spike IgG Ab persisted in 100% (69/69), 97% (72/74), and 93% (55/59) of seroconverted participants after 3, 6, and 12 months, while anti-nucleoprotein IgG Ab levels waned faster, persisting in 99% (68/69), 78% (58/74), and 55% (39/71) of participants, respectively. Conclusion: Following detection of a COVID-19 case in a household, other members had a high risk of becoming infected. NAb to early B-lineage SARS-CoV-2 persisted for at least a year in most cases.

8.
Immun Inflamm Dis ; 10(9): e679, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039644

RESUMO

INTRODUCTION: Long-term care facilities (LTCF) residents are at high risk for severe coronavirus disease 2019 (COVID-19), and therefore, COVID-19 vaccinations were prioritized for residents and personnel in Finland at the beginning of 2021. METHODS: We investigated COVID-19 outbreaks in two LTCFs, where residents were once or twice vaccinated. After the outbreaks we measured immunoglobulin G (IgG) antibodies to severe acute respiratory syndrome coronavirus 2 spike glycoprotein, neutralizing antibody (NAb) titers, and cell-mediated immunity markers from residents and healthcare workers (HCWs). RESULTS: In LTFC-1, the outbreak was caused by an Alpha variant (B.1.1.7) and the attack rate (AR) among once vaccinated residents was 23%. In LTCF-2 the outbreak was caused by a Beta variant (B.1.351). Its AR was 47% although all residents had received their second dose 1 month before the outbreak. We observed that vaccination had induced lower IgG concentrations, NAb titers and cell-mediated immune responses in residents compared to HCWs. Only 1/8 residents had NAb to the Beta variant after two vaccine doses. CONCLUSIONS: The vaccinated elderly remain susceptible to breakthrough infections caused by Alpha and Beta variants. The weaker vaccine response in the elderly needs to be addressed in vaccination protocols, while new variants capable of evading vaccine-induced immunity continue to emerge.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Incidência , Assistência de Longa Duração , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
9.
Eur J Immunol ; 52(5): 816-824, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312186

RESUMO

The emergence of SARS-CoV-2 Omicron variant (B.1.1.529) with major spike protein mutations has raised concern over potential neutralization escape and breakthrough infections among vaccinated and previously SARS-CoV-2-infected subjects. We measured cross-protective antibodies against variants in health care workers (HCW, n = 20) and nursing home residents (n = 9) from samples collected at 1-2 months, following the booster (3rd) dose. We also assessed the antibody responses in subjects infected before the Omicron era (n = 38) with subsequent administration of a single mRNA vaccine dose. Following booster vaccination, HCWs had high IgG antibody concentrations to the spike protein and neutralizing antibodies (NAb) were detectable against all variants. IgG concentrations among the elderly remained lower, and some lacked NAbs against the Beta and Omicron variants. NAb titers were significantly reduced against Delta, Beta, and Omicron compared to WT virus regardless of age. Vaccination induced high IgG concentrations and variable titers of cross-reactive NAbs in previously infected subjects, whereas NAb titers against Omicron were barely detectable 1 month postinfection. High IgG concentrations with cross-protective neutralizing activity were detected after three Coronavirus Disease 2019 (COVID-19) vaccine doses in HCWs. However, lower NAb titers seen in the frail elderly suggest inadequate protection against Omicron breakthrough infections, yet protection against severe COVID-19 is expected.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pessoal de Saúde , Humanos , Imunoglobulina G , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
10.
Microbiol Spectr ; 10(2): e0225221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35262410

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
11.
Microbiol Spectr ; 9(3): e0113121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34787485

RESUMO

Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organization (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralization test (MNT). We also compared the MNT results of two laboratories. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13 to 150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA, 100% specificity and sensitivity were obtained for a shorter time window (13 to 36 and 13 to 28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralizing antibodies (NAbs). Anti-spike IgG concentrations correlated strongly (ρ = 0.77 to 0.84, P < 2.2 × 10-16) with NAb titers, and the two laboratories' NAb titers displayed a very strong correlation (ρ = 0.95, P < 2.2 × 10-16). Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against the WHO international standard did not, however, improve the comparability of FMIA and EIA results. IMPORTANCE SARS-CoV-2 serological assays with excellent clinical performance are essential for reliable estimation of the persistence of immunity after infection or vaccination. In this paper we present a thoroughly validated SARS-CoV-2 serological assay with excellent clinical performance and good comparability to neutralizing antibody titers. Neutralization tests are still considered the gold standard for SARS-CoV-2 serological assays, but our assay can identify samples with neutralizing antibodies with 100% sensitivity and 96% specificity without the need for laborious and slow biosafety level 3 (BSL-3) facility-requiring analyses.


Assuntos
Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , Imunofluorescência/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Proteínas do Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Nucleoproteínas , Fosfoproteínas/imunologia , SARS-CoV-2 , Sensibilidade e Especificidade
12.
Sci Rep ; 11(1): 20363, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645929

RESUMO

COVID-19 diagnostics was quickly ramped up worldwide early 2020 based on the detection of viral RNA. However, based on the scientific knowledge for pre-existing coronaviruses, it was expected that the SARS-CoV-2 RNA will be detected from symptomatic and at significant rates also from asymptomatic individuals due to persistence of non-infectious RNA. To increase the efficacy of diagnostics, surveillance, screening and pandemic control, rapid methods, such as antigen tests, are needed for decentralized testing and to assess infectiousness. A novel automated mariPOC SARS-CoV-2 test was developed for the detection of conserved structural viral nucleocapsid proteins. The test utilizes sophisticated optical laser technology for two-photon excitation and individual detection of immunoassay solid-phase particles. We validated the new method against qRT-PCR. Sensitivity of the test was 100.0% (13/13) directly from nasopharyngeal swab specimens and 84.4% (38/45) from swab specimens in undefined transport mediums. Specificity of the test was 100.0% (201/201). The test's limit of detection was 2.7 TCID50/test. It showed no cross-reactions. Our study shows that the new test can detect infectious individuals already in 20 min with clinical sensitivity close to qRT-PCR. The mariPOC is a versatile platform for syndromic testing and for high capacity infection control screening of infectious individuals.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Adulto , Idoso , Antígenos Virais/análise , COVID-19/imunologia , Reações Cruzadas/imunologia , Feminino , Finlândia/epidemiologia , Humanos , Imunoensaio/métodos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade
13.
Eur J Immunol ; 51(12): 3202-3213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580856

RESUMO

Most subjects develop antibodies to SARS-CoV-2 following infection. In order to estimate the duration of immunity induced by SARS-CoV-2 it is important to understand for how long antibodies persist after infection in humans. Here, we assessed the persistence of serum antibodies following WT SARS-CoV-2 infection at 8 and 13 months after diagnosis in 367 individuals. The SARS-CoV-2 spike IgG (S-IgG) and nucleoprotein IgG (N-IgG) concentrations and the proportion of subjects with neutralizing antibodies (NAb) were assessed. Moreover, the NAb titers among a smaller subset of participants (n = 78) against a WT virus (B) and variants of concern (VOCs): Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) were determined. We found that NAb against the WT virus persisted in 89% and S-IgG in 97% of subjects for at least 13 months after infection. Only 36% had N-IgG by 13 months. The mean S-IgG concentrations declined from 8 to 13 months by less than one third; N-IgG concentrations declined by two-thirds. Subjects with severe infection had markedly higher IgG and NAb levels and are expected to remain seropositive for longer. Significantly lower NAb titers against the variants compared to the WT virus, especially after a mild disease, suggests reduced protection against VOCs.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Imunoglobulina G/metabolismo , SARS-CoV-2/fisiologia , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Finlândia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
14.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905505

RESUMO

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Testes de Neutralização , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
15.
Vaccine ; 39(2): 402-411, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33246672

RESUMO

BACKGROUND: Avian influenza A(H5N1) viruses have caused sporadic infections in humans and thus they pose a significant global health threat. Among symptomatic patients the case fatality rate has been ca. 50%. H5N1 viruses exist in multiple clades and subclades and several candidate vaccines have been developed to prevent A(H5N1) infection as a principal measure for preventing the disease. METHODS: Serum antibodies against various influenza A(H5N1) clade viruses were measured in adults by ELISA-based microneutralization and haemagglutination inhibition tests before and after vaccination with two different A(H5N1) vaccines in 2009 and 2011. RESULTS: Two doses of AS03-adjuvanted A/Indonesia/5/2005 vaccine induced good homologous but poor heterologous neutralizing antibody responses against different clade viruses. However, non-adjuvanted A/Vietnam/1203/2004 booster vaccination in 2011 induced very strong and long-lasting homologous and heterologous antibody responses while homologous response remained weak in naïve subjects. CONCLUSIONS: Sequential vaccination with two different A(H5N1) pre-pandemic vaccines induced long-lasting high level cross-clade immunity against influenza A(H5N1) strains, thus supporting a prime-boost vaccination strategy in pandemic preparedness plans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Adjuvantes Imunológicos , Adulto , Animais , Anticorpos Antivirais , Formação de Anticorpos , Humanos , Influenza Humana/prevenção & controle , Pandemias , Vacinação
16.
Infect Dis (Lond) ; 53(2): 111-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33170050

RESUMO

BACKGROUND: We compared the clinical characteristics, findings, and outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19) or influenza to detect relevant differences. METHODS: From December 2019 to April 2020, we recruited all eligible hospitalized adults with respiratory infection to a prospective observational study at a tertiary care hospital in Finland. Influenza and SARS-CoV-2 infections were confirmed by RT-PCR. Follow-up lasted for 3 months from admission. RESULTS: We included 61 patients, of whom 28 were COVID-19 and 33 influenza patients with median ages of 53 and 56 years. Majority of both COVID-19 and influenza patients were men (61% vs. 67%) and had at least one comorbidity (68% vs. 85%). Pulmonary diseases and current smoking were less common among COVID-19 than influenza patients (5 [18%] vs. 15 [45%], p=.03 and 1 [4%] vs. 10 [30%], p=.008). In chest X-ray at admission, ground-glass opacities (GGOs) and consolidations were more frequent among COVID-19 than influenza patients (19 [68%] and 7 [21%], p<.001). Severe disease and intensive care unit (ICU) admission occurred more often among COVID-19 than influenza patients (26 [93%] vs. 19 [58%], p=.003 and 8 [29%] vs. 2 [6%], p=.034). COVID-19 patients were hospitalized longer than influenza patients (six days [IQR 4-21] vs. 3 [2-4], p<.001). CONCLUSIONS: Bilateral GGOs and consolidations in chest X-ray may help to differentiate COVID-19 from influenza. Hospitalized COVID-19 patients had more severe disease, required longer hospitalization and were admitted to ICU more often than influenza patients, which has important implications for public health policies.


Assuntos
COVID-19/epidemiologia , Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus/epidemiologia , Influenza Humana/epidemiologia , Orthomyxoviridae/patogenicidade , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/mortalidade , COVID-19/virologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/virologia , Comorbidade , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/mortalidade , Diabetes Mellitus/virologia , Feminino , Finlândia/epidemiologia , Hospitalização , Humanos , Incidência , Influenza Humana/diagnóstico , Influenza Humana/mortalidade , Influenza Humana/virologia , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Análise de Sobrevida , Centros de Atenção Terciária , Tomografia Computadorizada por Raios X
17.
Euro Surveill ; 25(11)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32209163

RESUMO

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Assuntos
Busca de Comunicante , Infecções por Coronavirus , Coronavirus/genética , Coronavirus/isolamento & purificação , Pandemias , Pneumonia Viral , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Viagem , Adulto , Anticorpos Antivirais/sangue , Infecções Assintomáticas , Betacoronavirus , COVID-19 , Teste para COVID-19 , China , Técnicas de Laboratório Clínico , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Finlândia , Imunofluorescência , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Testes de Neutralização , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/etiologia , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral
18.
Vaccine ; 37(20): 2731-2740, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954308

RESUMO

Influenza A(H1N1)pdm09 viruses have been circulating throughout the world since the 2009 pandemic. A/California/07/2009 (H1N1) virus was included in seasonal influenza vaccines for seven years altogether, providing a great opportunity to analyse vaccine-induced immunity in relation to the postpandemic evolution of the A(H1N1)pdm09 virus. Serum antibodies against various epidemic strains of influenza A(H1N1)pdm09 viruses were measured among health care workers (HCWs) by haemagglutination inhibition and microneutralization tests before and after 2010 and 2012 seasonal influenza vaccinations. We detected high responses of vaccine-induced neutralizing antibodies to six distinct genetic groups. Our results indicate antigenic similarity between vaccine and circulating A(H1N1)pdm09 strains, and substantial vaccine-induced immunity against circulating epidemic viruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Humoral , Vírus da Influenza A Subtipo H1N1/classificação , Testes de Neutralização , Filogenia , Estações do Ano , Testes Sorológicos , Relação Estrutura-Atividade , Vacinação
19.
Euro Surveill ; 22(33)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28840826

RESUMO

One imported and five secondary cases of measles were detected in Finland between June and August 2017. The measles sequences available for five laboratory-confirmed cases were identical and belonged to serotype D8. The large number of potentially exposed Finnish and foreign individuals called for close cooperation of national and international public health authorities and other stakeholders. Raising awareness among healthcare providers and ensuring universally high vaccination coverage is crucial to prevent future clusters and outbreaks.


Assuntos
Busca de Comunicante , Surtos de Doenças , Vírus do Sarampo/isolamento & purificação , Sarampo/epidemiologia , Viagem , Adolescente , Adulto , Surtos de Doenças/prevenção & controle , Finlândia/epidemiologia , Humanos , Sarampo/diagnóstico , Sarampo/transmissão , Vírus do Sarampo/classificação , Saúde Pública , Sorogrupo , Sorotipagem , Vacinação
20.
Euro Surveill ; 22(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28251891

RESUMO

Systems for register-based monitoring of vaccine effectiveness (VE) against laboratory-confirmed influenza (LCI) in real time were set up in Stockholm County, Sweden, and Finland, before start of the 2016/17 influenza season, using population-based cohort studies. Both in Stockholm and Finland, an early epidemic of influenza A(H3N2) peaked in week 52, 2016. Already during weeks 48 to 50, analyses of influenza VE in persons 65 years and above showed moderately good estimates of around 50%, then rapidly declined by week 2, 2017 to 28% and 32% in Stockholm and Finland, respectively. The sensitivity analyses, where time since vaccination was taken into account, could not demonstrate a clear decline, neither by calendar week nor by time since vaccination. Most (68%) of the samples collected from vaccinated patients belonged to the 3C.2a1 subclade with the additional amino acid substitution T135K in haemagglutinin (64%) or to subclade 3C.2a with the additional haemagglutinin substitutions T131K and R142K (36%). The proportion of samples containing these alterations increased during the studied period. These substitutions may be responsible for viral antigenic change and part of the observed VE drop. Another possible cause is poor vaccine immunogenicity in older persons. Improved influenza vaccines are needed, especially for the elderly.


Assuntos
Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Vigilância da População , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Finlândia , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/imunologia , Masculino , Filogenia , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Estações do Ano , Distribuição por Sexo , Suécia , Resultado do Tratamento , Vacinação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...