Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 79: 101838, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995884

RESUMO

OBJECTIVE: Carbohydrate Response Element Binding Protein (ChREBP) is a glucose 6-phosphate (G6P)-sensitive transcription factor that acts as a metabolic switch to maintain intracellular glucose and phosphate homeostasis. Hepatic ChREBP is well-known for its regulatory role in glycolysis, the pentose phosphate pathway, and de novo lipogenesis. The physiological role of ChREBP in hepatic glycogen metabolism and blood glucose regulation has not been assessed in detail, and ChREBP's contribution to carbohydrate flux adaptations in hepatic Glycogen Storage Disease type 1 (GSD I) requires further investigation. METHODS: The current study aimed to investigate the role of ChREBP as a regulator of glycogen metabolism in response to hepatic G6P accumulation, using a model for acute hepatic GSD type Ib. The immediate biochemical and regulatory responses to hepatic G6P accumulation were evaluated upon G6P transporter inhibition by the chlorogenic acid S4048 in mice that were either treated with a short hairpin RNA (shRNA) directed against ChREBP (shChREBP) or a scrambled shRNA (shSCR). Complementary stable isotope experiments were performed to quantify hepatic carbohydrate fluxes in vivo. RESULTS: ShChREBP treatment normalized the S4048-mediated induction of hepatic ChREBP target genes to levels observed in vehicle- and shSCR-treated controls. In parallel, hepatic shChREBP treatment in S4048-infused mice resulted in a more pronounced accumulation of hepatic glycogen and further reduction of blood glucose levels compared to shSCR treatment. Hepatic ChREBP knockdown modestly increased glucokinase (GCK) flux in S4048-treated mice while it enhanced UDP-glucose turnover as well as glycogen synthase and phosphorylase fluxes. Hepatic GCK mRNA and protein levels were induced by shChREBP treatment in both vehicle- and S4048-treated mice, while glycogen synthase 2 (GYS2) and glycogen phosphorylase (PYGL) mRNA and protein levels were reduced. Finally, knockdown of hepatic ChREBP expression reduced starch domain binding protein 1 (STBD1) mRNA and protein levels while it inhibited acid alpha-glucosidase (GAA) activity, suggesting reduced capacity for lysosomal glycogen breakdown. CONCLUSIONS: Our data show that ChREBP activation controls hepatic glycogen and blood glucose levels in acute hepatic GSD Ib through concomitant regulation of glucose phosphorylation, glycogenesis, and glycogenolysis. ChREBP-mediated control of GCK enzyme levels aligns with corresponding adaptations in GCK flux. In contrast, ChREBP activation in response to acute hepatic GSD Ib exerts opposite effects on GYS2/PYGL enzyme levels and their corresponding fluxes, indicating that GYS2/PYGL expression levels are not limiting to their respective fluxes under these conditions.


Assuntos
Glicemia , Doença de Depósito de Glicogênio Tipo I , Animais , Camundongos , Metabolismo dos Carboidratos , Modelos Animais de Doenças , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Hepático/metabolismo , Fosfatos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 12(1): 6803, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546555

RESUMO

High-dose chemotherapy causes intestinal inflammation and subsequent breakdown of the mucosal barrier, permitting translocation of enteric pathogens, clinically manifesting as fever. Antibiotics are mainstay for controlling these complications, however, they are increasingly recognized for their detrimental effects, including antimicrobial resistance and dysbiosis. Here, we show that mucosal barrier injury induced by the mucotoxic chemotherapeutic agent, high-dose melphalan (HDM), is characterized by hyper-active IL-1b/CXCL1/neutrophil signaling. Inhibition of this pathway with IL-1RA, anakinra, minimized the duration and intensity of mucosal barrier injury and accompanying clinical symptoms, including diarrhea, weight loss and fever in rats. 16S analysis of fecal microbiome demonstrated a more stable composition in rats receiving anakinra, with reduced pathogen expansion. In parallel, we report through Phase IIA investigation that anakinra is safe in stem cell transplant patients with multiple myeloma after HDM. Ramping-up anakinra (100-300 mg administered intravenously for 15 days) did not cause any adverse events or dose limiting toxicities, nor did it change time to neutrophil recovery. Our results reinforce that strengthening the mucosal barrier may be an effective supportive care strategy to mitigate local and systemic clinical consequences of HDM. We are now conducting a Phase IIB multicenter, placebo-controlled, double-blinded trial to assess clinical efficacy of anakinra (AFFECT-2).Trial registration: ClinicalTrials.gov identifier: NCT03233776.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Animais , Febre/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1 , Melfalan/uso terapêutico , Mieloma Múltiplo/diagnóstico , Ratos , Microambiente Tumoral
5.
Biol Neonate ; 34(5-6): 248-52, 1978.
Artigo em Inglês | MEDLINE | ID: mdl-737248

RESUMO

The development of cytosolic DT-diaphorase--NAD(P)H dehydrogenase, quinone, EC 1.6.99.2--and its induction by benzo(a)pyrene has been studied in rat liver. DT-diaphorase belongs to the late suckling cluster, because the largest increase in activity can be observed 18 days after birth. A considerable activity is present, however, in the neonatal period. The activity of the enzyme can be prematurely induced by benzo(a)pyrene. A lag phase of 10 h can be observed before the activity of DT-diaphorase starts to increase. This increase in activity proved to be sensitive to inhibitors of mixed-function oxydase and RNA and DNA synthesis.


Assuntos
Benzopirenos/farmacologia , Fígado/enzimologia , NADH NADPH Oxirredutases/biossíntese , Quinona Redutases/biossíntese , Fatores Etários , Animais , Animais Recém-Nascidos , Citosol/enzimologia , DNA/biossíntese , Indução Enzimática , Fígado/citologia , Fígado/crescimento & desenvolvimento , RNA/biossíntese , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...