Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 14(10): 5011-5026, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30183284

RESUMO

The NMR solution structures of human telomeric (Htel) G-quadruplexes (GQs) are characterized by the presence of two lateral loops complemented by either diagonal or propeller loops. Bases of a given loop can establish interactions within the loop as well as with other loops and the flanking bases. This can lead to a formation of base alignments above and below the GQ stems. These base alignments are known to affect the loop structures and relative stabilities of different Htel GQ folds. We have carried out a total of 217 µs of classical (unbiased) molecular dynamics (MD) simulations starting from the available solution structures of Htel GQs to characterize structural dynamics of the lateral and diagonal loops, using several recent AMBER DNA force-field variants. As the loops are involved in diverse stacking and H-bonding interactions, their dynamics is slow, and extended sampling is required to capture different conformations. Nevertheless, although the simulations are far from being quantitatively converged, the data suggest that multiple 10 µs-scale simulations can provide a quite good assessment of the loop conformational space as described by the force field. The simulations indicate that the lateral loops may sample multiple coexisting conformations, which should be considered when comparing simulations with the NMR models as the latter include ensemble averaging. The adenine-thymine Watson-Crick arrangement was the most stable base pairing in the simulations. Adenine-adenine and thymine-thymine base pairs were also sampled but were less stable. The data suggest that the description of lateral and diagonal GQ loops in contemporary MD simulations is considerably more realistic than the description of propeller loops, though definitely not flawless.


Assuntos
Quadruplex G , Telômero/química , Pareamento de Bases , DNA/química , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
2.
Nucleic Acids Res ; 46(17): 8754-8771, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30165550

RESUMO

We have carried out an extended set of standard and enhanced-sampling MD simulations (for a cumulative simulation time of 620 µs) with the aim to study folding landscapes of the rGGGUUAGGG and rGGGAGGG parallel G-hairpins (PH) with propeller loop. We identify folding and unfolding pathways of the PH, which is bridged with the unfolded state via an ensemble of cross-like structures (CS) possessing mutually tilted or perpendicular G-strands interacting via guanine-guanine H-bonding. The oligonucleotides reach the PH conformation from the unfolded state via a conformational diffusion through the folding landscape, i.e. as a series of rearrangements of the H-bond interactions starting from compacted anti-parallel hairpin-like structures. Although isolated PHs do not appear to be thermodynamically stable we suggest that CS and PH-types of structures are sufficiently populated during RNA guanine quadruplex (GQ) folding within the context of complete GQ-forming sequences. These structures may participate in compact coil-like ensembles that involve all four G-strands and already some bound ions. Such ensembles can then rearrange into the fully folded parallel GQs via conformational diffusion. We propose that the basic atomistic folding mechanism of propeller loops suggested in this work may be common for their formation in RNA and DNA GQs.


Assuntos
Quadruplex G , Guanina/química , Dobramento de RNA , RNA/química , Sequência de Bases , Guanina/metabolismo , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , RNA/metabolismo , Termodinâmica
4.
J Chem Theory Comput ; 13(8): 3911-3926, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28657760

RESUMO

G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 µs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG]4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-µs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG]4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na+ ions move inside the GQs in a concerted manner, while larger relocations of the K+ ions are typically separated. We suggest that the Joung-Cheatham SPC/E K+ parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.


Assuntos
Cátions Monovalentes/química , DNA/química , Quadruplex G , Potássio/química , RNA/química , Sódio/química , Guanina/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Água/química
5.
J Phys Chem B ; 121(11): 2420-2433, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28290207

RESUMO

The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions. However, the function of the α/γ = t/t conformation in RNA is poorly understood. Here, we present molecular dynamics simulations of several prototypical RNA structures obtained from X-ray and NMR experiments, including canonical and mismatched RNA duplexes, UUCG and GAGA tetraloops, Loop E, the sarcin-ricin loop, a parallel guanine quadruplex, and a viral pseudoknot. The stability of various noncanonical α/γ backbone conformations was analyzed with two AMBER force fields, ff99bsc0χOL3 and ff99bsc0χOL3 with the recent εζOL1 and ßOL1 corrections for DNA. Although some α/γ substates were stable with seemingly well-described equilibria, many were unstable in our simulations. Notably, the most frequent noncanonical conformer α/γ = t/t was unstable in both tested force fields. Possible reasons for this instability are discussed. Our work reveals a potentially important artifact in RNA force fields and highlights a need for further force field refinement.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Aptâmeros de Nucleotídeos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estabilidade de RNA
6.
Artigo em Inglês | MEDLINE | ID: mdl-27863061

RESUMO

We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Animais , Humanos , Conformação de Ácido Nucleico
7.
J Phys Chem B ; 120(41): 10635-10648, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27681853

RESUMO

Classical force field (FF) molecular dynamics (MD) simulations of RNA tetranucleotides have substantial problems in reproducing conformer populations indicated by NMR experiments. To provide more information about the possible sources of errors, we performed quantum mechanical (QM, TPSS-D3/def2-TZVP) and molecular mechanics (MM, AMBER parm99bsc0+χOL3) calculations of different r(CCCC), r(GACC), and r(UUUU) conformers obtained from explicit solvent MD simulations. Solvent effects in the static QM and MM calculations were mimicked using implicit solvent models (COSMO and Poisson-Boltzmann, respectively). The comparison of QM and MM geometries and energies revealed that the two methodologies provide qualitatively consistent results in most of the cases. Even though we found some differences, these were insufficient to indicate any systematic corrections of the RNA FF terms that could improve the performance of classical MD in simulating tetranucleotides. On the basis of these findings, we inferred that the overpopulation of intercalated conformers in the MD simulations of RNA tetramers, which were not observed experimentally, might be predominantly caused by imbalanced water-solvent and water-water interactions. Apart from the large-scale QM calculations performed to assess the performance of the AMBER FF, a representative spectrum of faster QM methods was tested.

8.
J Phys Chem B ; 119(49): 15176-90, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26548477

RESUMO

We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 µs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.


Assuntos
HIV-1/química , RNA/química , Cristalografia por Raios X , Simulação de Dinâmica Molecular
9.
J Phys Chem B ; 118(24): 6687-701, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24845793

RESUMO

The mRNA decoding site (A-site) in the small ribosomal subunit controls fidelity of the translation process. Here, using molecular dynamics simulations and bioinformatic analyses, we investigated the structural dynamics of the human mitochondrial A-site (native and A1490G mutant) and compared it with the dynamics of the bacterial A-site. We detected and characterized a specific RNA backbone configuration, S-turn2, which occurs in the human mitochondrial but not in the bacterial A-site. Mitochondrial and bacterial A-sites show different propensities to form S-turn2 that may be caused by different base-pairing patterns of the flanking nucleotides. Also, the S-turn2 structural stability observed in the simulations supports higher accuracy and lower speed of mRNA decoding in mitochondria in comparison with bacteria. In the mitochondrial A-site, we observed collective movement of stacked nucleotides A1408·C1409·C1410, which may explain the known differences in aminoglycoside antibiotic binding affinities toward the studied A-site variants.


Assuntos
Mitocôndrias/metabolismo , Simulação de Dinâmica Molecular , Ribossomos/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sítios de Ligação , Biologia Computacional , Humanos , Ligação de Hidrogênio , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
10.
J Phys Chem Lett ; 5(10): 1771-82, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26270382

RESUMO

We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.

11.
J Chem Theory Comput ; 10(6): 2615-29, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580782

RESUMO

A set of conformations obtained from explicit solvent molecular dynamics (MD) simulations of the Sarcin-Ricin internal loop (SRL) RNA motif is investigated using quantum mechanical (QM, TPSS-D3/def2-TZVP DFT-D3) and molecular mechanics (MM, AMBER parm99bsc0+χol3 force field) methods. Solvent effects are approximated using implicit solvent methods (COSMO for DFT-D3; GB and PB for MM). Large-scale DFT-D3 optimizations of the full 11-nucleotide motif are compared to MM results and reveal a higher flexibility of DFT-D3 over the MM in the optimization procedure. Conformational energies of the SRL motif expose significant differences in the DFT-D3 and MM energy descriptions that explain difficulties in MD simulations of the SRL motif. The TPSS-D3 data are in excellent agreement with results obtained by the hybrid functionals PW6B95-D3 and M06-2X. Computationally more efficient methods such as PM6-D3H and HF-3c show promising but partly inconsistent results. It is demonstrated that large-scale DFT-D3 computations on complete nucleic acids building blocks are a viable tool to complement the picture obtained from MD simulations and can be used as benchmarks for faster computational methods. Methodological challenges of large-scale QM computations on nucleic acids such as missing solvent-solute interactions and the truncation of the studied systems are discussed.

12.
J Phys Chem B ; 117(46): 14302-19, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144333

RESUMO

The sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations. We identified 57 instances of the SR motif in a nonredundant subset of the RNA X-ray structure database and analyzed their base pairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large rRNA alignments to determine the frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with a highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Nonisosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. The MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that the inability to form stable cWW geometry is an important factor in the case of the first base pair of the flexible region of the SR motif. A comparison of structural, bioinformatics, SHAPE probing, and MD simulation data reveals that explicit solvent MD simulations neatly reflect the viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.


Assuntos
RNA/química , Pareamento de Bases , Biologia Computacional , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...