Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 13(12): e075062, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123186

RESUMO

OBJECTIVE: This study aims to describe the lived experiences of couples with a history of recurrent miscarriage in subsequent pregnancies and their perception of clinic support and cytogenetic investigations. DESIGN: A qualitative interview study with a phenomenological approach. Semistructured interviews were conducted using video conferencing software. Two researchers coded the transcripts and developed themes. SETTING: A National Health Service (NHS) hospital in central England between May 2021 and July 2021, during the COVID-19 pandemic. PARTICIPANTS: Patients attending a specialist recurrent miscarriage clinic and their partners. This clinic accepts referrals from all over the UK for couples who have suffered two or more miscarriages. RESULTS: Seventeen participants were interviewed: 14 women and 3 male partners. Six main themes were identified from the data. Three related to the women's lived experience of recurrent miscarriage (emotions in pregnancy, confidence in their bodies, expectations and coping strategies) and three related to the clinical support offered by the NHS service (impact of early pregnancy scanning, effect of the COVID-19 pandemic and cytogenetic investigations). CONCLUSIONS: Pregnancy following recurrent miscarriage is extremely difficult. Recurrent miscarriage specialist services can provide couples with support and access to early pregnancy scanning, which can make the first trimester of pregnancy manageable. Partners should not be excluded from the clinic as it can result in a feeling of disconnect. Cytogenetic testing of pregnancy tissue can offer couples with recurrent miscarriage closure after pregnancy loss and is a desired investigation.


Assuntos
Aborto Habitual , Aborto Espontâneo , COVID-19 , Gravidez , Feminino , Humanos , Masculino , Medicina Estatal , Pandemias , Aborto Espontâneo/psicologia , Pesquisa Qualitativa
2.
BMJ Open ; 12(2): e052661, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110317

RESUMO

OBJECTIVES: To measure pregnancy outcome following attendance at a recurrent miscarriage service and identify factors that influence outcome. DESIGN: Prospective, observational electronic cohort study. SETTING: Participants attending a specialist recurrent miscarriage clinic, with a history of two or more pregnancy losses. 857 new patients attended over a 30-month period and were invited to participate. Participant data were recorded on a bespoke study database, 'Tommy's Net'. PARTICIPANTS: 777 women consented to participate (90.7% of new patients). 639 (82%) women continued within the cohort, and 138 were lost to follow-up. Mean age of active participants was 34 years for women and 37 years for partners, with a mean of 3.5 (1-19) previous pregnancy losses. Rates of obesity (maternal: 23.8%, paternal: 22.4%), smoking (maternal:7.4%, paternal: 19.4%) and alcohol consumption (maternal: 50%, paternal: 79.2%) were high and 55% of participants were not taking folic acid. OUTCOME MEASURES: Biannual collection of pregnancy outcomes, either through prompted self-reporting, or existing hospital systems. RESULTS: 639 (82%) women were followed up. 404 (83.4%) reported conception and 106 (16.6%) reported no pregnancy, at least 6 months following registration. Of those that conceived, 72.8% (294/404) had a viable pregnancy. Maternal smoking and body mass index (BMI) over 30 were significantly higher in those who did not conceive (p=0.001) CONCLUSIONS: Tommy's Net provides a secure electronic repository on data for couples with recurrent pregnancy loss and associated outcomes. The study identified that subfertility, as well as repeated miscarriage, maternal BMI and smoking status, contributed to failure to achieve live birth. Study findings may enable comparison of clinic outcomes and inform the development of a personalised holistic care package.


Assuntos
Aborto Habitual , Resultado da Gravidez , Aborto Habitual/epidemiologia , Adulto , Estudos de Coortes , Feminino , Humanos , Nascido Vivo , Gravidez , Resultado da Gravidez/epidemiologia , Estudos Prospectivos
3.
Hum Reprod ; 37(4): 747-761, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092277

RESUMO

STUDY QUESTION: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY: Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4-12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS: A computational procedure, named 'EndoTime', was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE: The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P < 0.005; CXCL14: P < 2.7e-6; DPP4: P < 3.7e-13). Pearson correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree of congruency between the two (P = 8.6e-10, R2 = 0.687). Estimated timings did not differ significantly between control subjects and patients with recurrent pregnancy loss or recurrent implantation failure (P > 0.05). LARGE SCALE DATA: The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION: Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS: Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. None of the authors have any competing interests. J.L. was funded by the Biotechnology and Biological Sciences Research Council (UK) through the Midlands Integrative Biology Training Partnership (MIBTP, BB/M01116X/1).


Assuntos
Aborto Habitual , Endométrio , Aborto Habitual/metabolismo , Endométrio/metabolismo , Feminino , Humanos , Fase Luteal/metabolismo , Gravidez , Reprodutibilidade dos Testes , Análise de Sequência de RNA
4.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487490

RESUMO

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.


At the beginning of a human pregnancy, the embryo implants into the uterus lining, known as the endometrium. At this point, the endometrium transforms into a new tissue that helps the placenta to form. Problems in this transformation process are linked to pregnancy disorders, many of which can lead to implantation failure (the embryo fails to invade the endometrium altogether) or recurrent miscarriages (the embryo implants successfully, but the interface between the placenta and the endometrium subsequently breaks down). Studying the implantation of human embryos directly is difficult due to ethical and technical barriers, and animals do not perfectly mimic the human process, making it challenging to determine the causes of pregnancy disorders. However, it is likely that a form of cellular arrest called senescence, in which cells stop dividing but remain metabolically active, plays a role. Indeed, excessive senescence in the cells that make up the endometrium is associated with recurrent miscarriage, while a lack of senescence is associated with implantation failure. To study this process, Rawlings et al. developed a new laboratory model of the human endometrium by assembling two of the main cell types found in the tissue into a three-dimensional structure. When treated with hormones, these 'assembloids' successfully mimic the activity of genes in the cells of the endometrium during implantation. Rawlings et al. then exposed the assembloids to the drug dasatinib, which targets and eliminates senescent cells. This experiment showed that assembloids become very robust and static when devoid of senescent cells. Rawlings et al. then studied the interaction between embryos and assembloids using time-lapse imaging. In the absence of dasatinib treatment, cells in the assembloid migrated towards the embryo as it expanded, a process required for implantation. However, when senescent cells were eliminated using dasatinib, this movement of cells towards the embryo stopped, and the embryo failed to expand, in a situation that mimicks implantation failure. The assembloid model of the endometrium may help scientists to study endometrial defects in the lab and test potential treatments. Further work will include other endometrial cell types in the assembloids, and could help increase the reliability of the model. However, any drug treatments identified using this model will need further research into their safety and effectiveness before they can be offered to patients.


Assuntos
Senescência Celular , Implantação do Embrião/fisiologia , Endométrio/citologia , Células Estromais/citologia , Técnicas de Cocultura , Decídua/fisiologia , Feminino , Humanos , Organoides , Gravidez
5.
Stem Cells ; 39(8): 1067-1080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764639

RESUMO

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.


Assuntos
Implantação do Embrião , Endométrio , Diferenciação Celular , Decídua , Embrião de Mamíferos , Feminino , Humanos , Gravidez , Células Estromais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...