Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(43): eadj1010, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878694

RESUMO

The time of day strongly influences adaptive behaviors like long-term memory, but the correlating synaptic and molecular mechanisms remain unclear. The circadian clock comprises a canonical transcription-translation feedback loop (TTFL) strictly dependent on the BMAL1 transcription factor. We report that BMAL1 rhythmically localizes to hippocampal synapses in a manner dependent on its phosphorylation at Ser42 [pBMAL1(S42)]. pBMAL1(S42) regulates the autophosphorylation of synaptic CaMKIIα and circadian rhythms of CaMKIIα-dependent molecular interactions and LTP but not global rest/activity behavior. Therefore, our results suggest a model in which repurposing of the clock protein BMAL1 to synapses locally gates the circadian timing of plasticity.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Fosforilação , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo
2.
Nat Commun ; 14(1): 3720, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349305

RESUMO

Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.


Assuntos
Barreira Hematoencefálica , Plexo Corióideo , Camundongos , Masculino , Animais , Plexo Corióideo/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Hormônios Tireóideos/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo , Transporte Biológico
3.
J Neurosci ; 39(25): 4847-4863, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30926746

RESUMO

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice. Aspartate content was significantly reduced in cerebral cortical extracts as well as synaptosomes from cerebral cortex of synGLT-1 KO compared with control littermates. 13C-Labeling of tricarboxylic acid cycle intermediates originating from metabolism of [U-13C]-glutamate was significantly reduced in synGLT-1 KO synaptosomes. The decreased aspartate content was due to diminished entry of glutamate into the tricarboxylic acid cycle. Pyruvate recycling, a pathway necessary for full glutamate oxidation, was also decreased. ATP production was significantly increased, despite unaltered oxygen consumption, in isolated mitochondria from the synGLT-1 KO. The density of mitochondria in axon terminals and perisynaptic astrocytes was increased in the synGLT-1 KO. Intramitochondrial cristae density of synGLT-1 KO mice was increased, suggesting increased mitochondrial efficiency, perhaps in compensation for reduced access to glutamate. SynGLT-1 KO synaptosomes exhibited an elevated oxygen consumption rate when stimulated with veratridine, despite a lower baseline oxygen consumption rate in the presence of glucose. GLT-1 expressed in neurons appears to be required to provide glutamate to synaptic mitochondria and is linked to neuronal energy metabolism and mitochondrial function.SIGNIFICANCE STATEMENT All synaptic transmitters need to be cleared from the extracellular space after release, and transporters are used to clear glutamate released from excitatory synapses. GLT-1 is the major glutamate transporter, and most GLT-1 is expressed in astrocytes. Only 5%-10% is expressed in neurons, primarily in axon terminals. The function of GLT-1 in axon terminals remains unknown. Here, we used a conditional KO approach to investigate the significance of the expression of GLT-1 in neurons. We found multiple abnormalities of mitochondrial function, suggesting impairment of glutamate utilization by synaptic mitochondria in the neuronal GLT-1 KO. These data suggest that GLT-1 expressed in axon terminals may be important in maintaining energy metabolism and biosynthetic activities mediated by presynaptic mitochondria.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Ácido Aspártico/metabolismo , Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Consumo de Oxigênio/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/genética , Sinaptossomos/metabolismo
4.
Neurobiol Learn Mem ; 160: 160-172, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668981

RESUMO

Sleep is a mysterious, developmentally regulated behavior fundamental for cognition in both adults and developing animals. A large number of studies offer a substantive body of evidence that demonstrates that the ontogeny of sleep architecture parallels brain development. Sleep deprivation impairs the consolidation of learned tasks into long-term memories and likely links sleep to the neural mechanisms underlying memory and its physiological roots in brain plasticity. Consistent with this notion is the alarming frequency of sleep and circadian rhythm dysfunction in children with neurodevelopmental disorders (NDDs). While the mechanisms underlying sleep dysfunction in most NDDs still remains poorly understood, here we will review several sentinel examples of monogenetic NDDs with both well-established connections to synaptic dysfunction and evidence of sleep or circadian dysfunction: Tuberous Sclerosis Complex, Fragile X Syndrome, and Angelman Syndrome. We suggest that the coincident maturation of sleep with synaptic physiology is one of the core reasons for the commonplace disruption of sleep in NDDs and argue that disorders with well-defined molecular genetics can provide a unique lens for understanding and unraveling the molecular correlates that link the development of sleep and circadian rhythms to health and disease.


Assuntos
Encéfalo , Transtornos Cronobiológicos/fisiopatologia , Desenvolvimento Humano/fisiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Sinapses/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cronobiológicos/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Sono-Vigília/metabolismo
5.
Biomaterials ; 192: 510-522, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529870

RESUMO

Stroke, traumatic brain injuries, and other similar conditions often lead to significant loss of functional brain tissue and associated disruption of neuronal signaling. A common strategy for replacing lost neurons is the injection of dissociated neural stem cells or differentiated neurons. However, this method is unlikely to be suitable for replacing large brain cavities, and the resulting distribution of neurons may lack the necessary architecture to support appropriate brain function. Engineered neural tissues may be a viable alternative. Cell death is a prominent concern in neuronal grafting studies, a problem that could be magnified with the transplantation of engineered neural tissues. Here, we examined the effect of one contributor to cell death, acute cerebral inflammation, on neuronal survival after the transplantation of bioengineered constructs based on silk scaffolds. We found evidence of a high degree of inflammation and poor neuronal survival after introducing engineered constructs into the motor cortex of rats. Integrating a corticosteroid (methylprednisolone) into the constructs resulted in significantly improved neuron survival during the acute phase of inflammation. The improved construct survival was associated with decreased markers of inflammation and an anti-inflammatory state of the immune system due to the steroid treatment.


Assuntos
Transplante de Tecido Encefálico/métodos , Inflamação/prevenção & controle , Seda/química , Alicerces Teciduais/química , Animais , Bombyx , Encéfalo/citologia , Transplante de Tecido Encefálico/efeitos adversos , Sobrevivência Celular , Células Cultivadas , Inflamação/etiologia , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Seda/uso terapêutico , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...