Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(4): 703-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514887

RESUMO

Analysis of the human hematopoietic progenitor compartment is being transformed by single-cell multimodal approaches. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) enables coupled surface protein and transcriptome profiling, thereby revealing genomic programs underlying progenitor states. To perform CITE-seq systematically on primary human bone marrow cells, we used titrations with 266 CITE-seq antibodies (antibody-derived tags) and machine learning to optimize a panel of 132 antibodies. Multimodal analysis resolved >80 stem, progenitor, immune, stromal and transitional cells defined by distinctive surface markers and transcriptomes. This dataset enables flow cytometry solutions for in silico-predicted cell states and identifies dozens of cell surface markers consistently detected across donors spanning race and sex. Finally, aligning annotations from this atlas, we nominate normal marrow equivalents for acute myeloid leukemia stem cell populations that differ in clinical response. This atlas serves as an advanced digital resource for hematopoietic progenitor analyses in human health and disease.


Assuntos
Células-Tronco Hematopoéticas , Transcriptoma , Humanos , Medula Óssea , Perfilação da Expressão Gênica , Células da Medula Óssea
2.
Exp Hematol ; 68: 51-61, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30243574

RESUMO

The Human Cell Atlas (HCA) is expected to facilitate the creation of reference cell profiles, marker genes, and gene regulatory networks that will provide a deeper understanding of healthy and disease cell types from clinical biospecimens. The hematopoietic system includes dozens of distinct, transcriptionally coherent cell types, including intermediate transitional populations that have not been previously described at a molecular level. Using the first data release from the HCA bone marrow tissue project, we resolved common, rare, and potentially transitional cell populations from over 100,000 hematopoietic cells spanning 35 transcriptionally coherent groups across eight healthy donors using emerging new computational approaches. These data highlight novel mixed-lineage progenitor populations and putative trajectories governing granulocytic, monocytic, lymphoid, erythroid, megakaryocytic, and eosinophil specification. Our analyses suggest significant variation in cell-type composition and gene expression among donors, including biological processes affected by donor age. To enable broad exploration of these findings, we provide an interactive website to probe intra-cell and extra-cell population differences within and between donors and reference markers for cellular classification and cellular trajectories through associated progenitor states.


Assuntos
Atlas como Assunto , Células da Medula Óssea , Biologia Computacional , Internet , Sequência de Bases , Células da Medula Óssea/classificação , Transplante de Medula Óssea , Linhagem da Célula , Código de Barras de DNA Taxonômico , Feminino , Redes Reguladoras de Genes , Variação Genética , Células-Tronco Hematopoéticas/classificação , Humanos , Masculino , RNA/genética , Padrões de Referência , Alinhamento de Sequência , Doadores de Tecidos , Transcriptoma , Interface Usuário-Computador
3.
Dev Biol ; 434(1): 36-47, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183737

RESUMO

The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Hibridização In Situ/métodos , Células-Tronco Mesenquimais/metabolismo , Néfrons/embriologia , Animais , Proteínas de Homeodomínio/biossíntese , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína Meis1/biossíntese , Néfrons/citologia , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...