Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Chromatogr A ; 1722: 464843, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574599

RESUMO

Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 µM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.


Assuntos
Ânions , Cromatografia de Fase Reversa , Molibdênio , Ácidos Fosfóricos , Ânions/química , Molibdênio/química , Ácidos Fosfóricos/química , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção
2.
Heliyon ; 10(5): e27320, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463873

RESUMO

This study collected samples of particulate matter that are 2.5 µm or less in diameter (PM2.5) in Kanazawa, Japan, and Noto Peninsula located 100 km north on the windward side of the westerlies from the Asian continent and characterized the extent of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) pollution in Kanazawa. Emission areas and specific sources of PM2.5 and of PAHs and NPAHs were clarified via back-trajectory analysis and the NP-method, respectively. The results indicate that during 2020 and 2021, most PAHs (93%) in Kanazawa were transported from the Asian continent by westerlies and that the main source was coal and biomass combustion. The presence of NPAHs in Kanazawa was caused by a mixture of transport from the Asian continent (53%) and local emissions (47%), with the main source of the latter being from vehicles. Although the content of combustion-derived particulates (Pc) was <2.4% of PM2.5 in Kanazawa, this showed a similar seasonal variation (winter > summer) to that of PAHs. The contribution of Pc transported from the Asian continent exceeded that of locally emitted Pc. The current situation of Kanazawa is considerably different from that of 1997, when local vehicles were the main source of pollution.

3.
Environ Pollut ; 333: 122011, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302783

RESUMO

Microplastics are subject to environmental forces that can change polymer organization on a molecular scale. However, it is not clear to what extent these changes occur in the environment and whether microplastics in the atmospheric and water environment differ. Here we identify structural differences between microplastics in the atmosphere and water environment from Japan and New Zealand, representing two archipelagos differing in their proximity to nearby countries and highly populated areas. We first highlight the propensity for smaller microplastics to arrive via air masses from the Asian continent to the Japan Sea coastal area, while New Zealand received larger, locally derived microplastics. Analyses of polyethylene in the Japanese atmosphere indicate that microplastics transported to the Japanese coastal areas were more crystalline than polyethylene particles in the water, suggesting that the plastics arriving by air were relatively more aged and brittle. By contrast, polypropylene particles in New Zealand waters were more degraded than the microplastic particles in the air. Due to the lack of abundance, both polyethylene and polypropylene could not be analyzed for both countries. Nevertheless, these findings show the structural variation in microplastics between environments in markedly different real-world locations, with implications for the toxic potential of these particles.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Água , Japão , Nova Zelândia , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos , Atmosfera , Polietileno/análise
4.
J Environ Sci (China) ; 121: 38-47, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35654514

RESUMO

A three-year sampling campaign was conducted at a roadside air pollution monitoring station in the urban area of Kanazawa, Japan. Due to a new emission regulation, PAHs levels decreased over the sampling campaign, exhibiting values of 706 ± 413 pg/m3 in 2017, 559 ± 384 pg/m3 in 2018, and 473 ± 234 pg/m3 in 2019. In each year, similar seasonal variations in PAHs levels were observed, with higher levels observed in winter and lower levels in summer. Among the PAHs isomer ratios, we observed that the ratio of benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF), [BbF]/([BbF] + [BkF]), and the ratio of indeno[1,2,3-cd]pyrene (IDP) and benzo[ghi]perylene (BgPe), [IDP]/([BgPe] + [IDP]), showed stability over the sampling campaign and were less affected by the new emission regulation, seasonal variations, and regional characteristics. When using the combined ratio ranges of 0.66 - 0.80 ([BbF]/([BbF] + [BkF]) and 0.26-0.49 ([IDP]/([BgPe] + [IDP]), traffic emissions were clearly distinguished from other PAHs emission sources. Principal component analysis (PCA) and positive matrix factorization (PMF) were also performed to further analyse the characteristics of traffic-related PAHs. Overall, this study affirmed the effectiveness of the new emission regulation in the reduction of PAHs emissions and provided a combined range for identifying PAHs traffic emission sources.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Emissões de Veículos , Monitoramento Ambiental , Japão , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
5.
Mar Pollut Bull ; 180: 113749, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596998

RESUMO

Concentrations of 13 phase-partitioned polycyclic aromatic hydrocarbons (PAHs) in seawater were monitored monthly off Oki Island, Japan, during 2015-2019 to elucidate seasonal variations, main source, and transport pathways of PAHs in the southwestern Sea of Japan. Total PAH (dissolved plus particulate) concentrations in surface seawater at 36°09.0'N, 133°17.3'E (site OK) were in the range 0.49-9.36 ng L-1 (mean 2.77, SD 2.05 ng L-1) with higher levels in summer-autumn, an order of magnitude lower than those in the East China Sea during 2005 and 2009-2011 and about one-third of those recorded in the Sea of Japan in 2008 and 2010. The main sources of dissolved and particulate PAHs were combustion products. Increasing dissolved PAH levels during July-October indicate that the area around southern Oki Island is impacted by PAH-rich summer continental-shelf water transported by the Tsushima Warm Current flowing from the East China Sea.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Carvão Mineral , Monitoramento Ambiental , Japão , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Poluentes Químicos da Água/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-35409624

RESUMO

To mitigate global warming and achieve carbon neutrality, biomass has become a widely used carbon-neutral energy source due to its low cost and easy availability. However, the incomplete combustion of biomass can produce polycyclic aromatic hydrocarbons (PAHs), which are harmful to human health. Moreover, increasing numbers of wildfires in many regions caused by global warming have greatly increased the emissions of PAHs from biomass burning. To effectively mitigate PAH pollution and health risks associated with biomass usage, the concentrations, compositions and influencing factors of PAH emissions from biomass burning are summarized in this review. High PAH emissions from open burning and stove burning are found, and two- to four-ring PAHs account for a higher proportion than five- and six-ring PAHs. Based on the mechanism of biomass burning, biomass with higher volatile matter, cellulose, lignin, potassium salts and moisture produces more PAHs. Moreover, burning biomass in stoves at a high temperature or with an insufficient oxygen supply can increase PAH emissions. Therefore, the formation and emission of PAHs can be reduced by pelletizing, briquetting or carbonizing biomass to increase its density and burning efficiency. This review contributes to a comprehensive understanding of PAH pollution from biomass burning, providing prospective insight for preventing air pollution and health hazards associated with carbon neutrality.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estudos Prospectivos
7.
Artigo em Inglês | MEDLINE | ID: mdl-35270572

RESUMO

Total suspended particles (TSP) were collected in Vladivostok, Russia, which is a typical port city. This study investigated the concentration, potential sources, and long-term variation in particle PAHs and NPAHs in the atmosphere of Vladivostok. The PAH and NPAH concentrations were higher in winter than in summer (PAHs: winter: 18.6 ± 9.80 ng/m3 summer: 0.54 ± 0.21 ng/m3; NPAHs: winter: 143 ± 81.5 pg/m3 summer: 143 ± 81.5 pg/m3). The diagnostic ratios showed that PAHs and NPAHs mainly came from vehicle emissions in both seasons, while heating systems were the main source of air pollution in winter. The TEQ assessment values were 2.90 ng/m3 and 0.06 ng/m3 in winter and summer, respectively, suggesting a significant excess cancer risk in the general population in winter. The ILCR values conveyed a potential carcinogenic risk because the value was between 1 × 10-5 and 1 × 10-7 and ingestion was a main contributor in Vladivostok. However, it is worth noting that the concentrations of PAHs and NPAHs showed an overall downward trend from 1999 to 2020. An important reason for this is the cogenerations project implemented by the Far Eastern Center for Strategic Research on Fuel and Energy Complex Development in 2010. This research clarified the latest variations in PAHs and NPAHs to provide continuous observation data for future chemical reaction or model prediction research.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano
8.
Ecotoxicol Environ Saf ; 234: 113401, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298967

RESUMO

To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.

9.
Chemosphere ; 280: 130662, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33940447

RESUMO

A method to calculate source contributions to atmospheric polycyclic aromatic hydrocarbons (PAHs) and their nitrated congeners (NPAHs) is proposed, using pyrene (Pyr) and 1-nitropyrene (1-NP), as respective representatives of PAHs and NPAHs. This is based on the known increases in NPAH to PAH ratios as combustion temperatures increase. The fractions of 1-NP and Pyr from high temperature combustion sources in total 1-NP and Pyr are respectively calculated as a (0 < a <1) and b (0 < b < 1). By using atmospheric concentrations of Pyr and 1-NP obtained at monitoring sites, contributions of high and low temperature combustion sources were calculated. Using this method, the contributions of automobiles and coal combustion facilities/industries to atmospheric Pyr and 1-NP concentrations were calculated for atmospheric samples collected in Kanazawa, Japan during a seasonal Asian dust event. The results show that Pyr was almost entirely emitted from industries in China and transported long-range to Japan. By contrast, 1-NP was emitted primarily from automobiles in Kanazawa and its surrounding areas, with a small amount of 1-NP possibly transported from China. The proposed method can provide greater clarity on source identification compared to the typically used PAH isomer pairs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Poeira , Monitoramento Ambiental , Japão , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos
10.
Artigo em Inglês | MEDLINE | ID: mdl-33803562

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of important organic pollutants widely emitted from anthropogenic activities, with a general distribution in the gas and particulate phases. Some PAHs are carcinogenic, teratogenic, and mutagenic. Inhalation exposure to PAHs is correlated with adverse health outcomes in the respiratory and cardiovascular systems. Thus, it is significant to determine the exposure level of the general population. This study summarizes the evaluation methods for PAH exposure, focusing on different exposure parameters. External exposure can be determined via the collection of the environmental pollution concentration through active samplers or passive samplers during environmental monitoring or personal sampling. Time-activity patterns give critical exposure information that captures the exposure period, origin, and behaviors. Modeling is a labor-less approach for human exposure estimation, and microenvironmental exposure requires specific research. It is important to select appropriate methods to quantify the exposure level to provide accurate data to establish the exposure-risk relationship and make scientific suggestions for the protection of public health.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Humanos , Exposição por Inalação/análise , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco
11.
Artigo em Inglês | MEDLINE | ID: mdl-33804117

RESUMO

Fine particulate matter (PM2.5) samples were collected in the summer and winter of 2015 and 2017 in Xinxiang, China. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in PM2.5 were detected via high-performance liquid chromatography (HPLC). The PAHs concentration in summer and winter decreased from 6.37 ± 1.30 ng/m3 and 96.9 ± 69.9 ng/m3 to 4.89 ± 2.67 ng/m3 and 49.8 ± 43.4 ng/m3 from 2015 to 2017. NPAHs decreased in winter (from 1707 ± 708 pg/m3 to 1192 ± 1113 pg/m3), but increased in summer from 2015 (336 ± 77.2 pg/m3) to 2017 (456 ± 312 pg/m3). Diagnostic ratios of PAHs indicated that petroleum combustion was the main emission source in summer, and pollutants originating from the combustion of petroleum, coal and biomass dominated in winter. The 2-nitrofluoranthene (2-NFR)/2-nitropyrene (2-NP) ratio in this study demonstrated that the OH radical pathway was the main pathway for the formation of 2-NP and 2-NFR. The mean total benzo[a]pyrene-equivalent concentrations (BaPeq) and incremental lifetime cancer risk (ILCR) values decreased from 2013 to 2017. The high value of total BaPeq in the winter of 2017 in Xinxiang revealed that a high-risk of cancer remained for residents. The results of this study demonstrate that the decreases in PAHs and NPAHS concentrations from 2015 to 2017. Combined with reducing gaseous pollutants concentration, the reduction in this study might be attributable to emissions reductions by implementing the air pollution control regulations in Xinxiang city in 2016.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano
12.
Chem Pharm Bull (Tokyo) ; 69(3): 237-245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642471

RESUMO

As a background sampling site in western Japan, the Kanazawa University Wajima Air Monitoring Station (KUWAMS) continuously observes the air pollutants, including PM1, PM2.5, organic carbon (OC) and element carbon (EC). Data for September 2019 to April 2020 were compared with data for September 2018 to April 2019. The mean concentrations of both PM1 and PM2.5 were 4.10 µg/m3 (47%) and 5.82 µg/m3 (33%) lower, respectively in the Coronavirus Disease 2019 (COVID-19) period (January to April) than in the same period in 2019. Notably, the average concentrations of both classes of particulate matter (PM) in the COVID-19 period were the lowest for that period in all years since 2016. OC and EC also considerably lower (by 69 and 63%, respectively) during the COVID-19 period than during the same period in 2019. All pollutants were then started to increase after the resumption of the work in 2020. The pollutant variations correspond to the measure implemented during the COVID-19 period, including the nationwide lockdown and work resumption. Furthermore, the reductions in the ratios PM1/PM2.5 and OC/EC during COVID-19 period indicate lighter pollution and fewer emission sources. This analysis of the changes in the pollutant concentrations during the epidemic and non-epidemic periods illustrates the significance of the dominant pollution emissions at KUWAMS and the impact of pollution from China that undergoes long-range transport to KUWAMS.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19 , Pandemias , Carbono/análise , China , Monitoramento Ambiental , Japão , Tamanho da Partícula , Material Particulado/análise , Quarentena
13.
Artigo em Inglês | MEDLINE | ID: mdl-33672189

RESUMO

Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Humanos , Compostos Orgânicos , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
14.
Environ Pollut ; 274: 116527, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508715

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 were first observed at a background site (Yuzhong site: YZ site) in the northwestern highlands of China in five seasonal campaigns. Compared with major northwestern cities, PAHs and NPAHs at the YZ site were at a lower level but showed consistent seasonal differences. The PAH and NPAH concentrations peaked in the winter campaigns, which were 36.11 ± 6.54 ng/m3 and 418.11 ± 123.55 pg/m3, respectively, in winter campaign 1 and 28.97 ± 10.07 ng/m3 and 226.89 ± 133.54 pg/m3, respectively, in winter campaign 2. These values were approximately a dozen times larger those in other campaigns. The diagnostic ratios indicate that vehicle emissions were the primary source of the PAHs throughout the five campaigns, and coal and biomass combustion also contributed during the winter, summer, and fall campaigns. Among NPAHs, 2-nitrofluoranthene and 2-nitropyrene were generated through OH radical-initiated reactions during atmospheric transport, while 1-nitropyrene came from combustion sources. There is an observation worth pondering, which is that the ratio between pyrene and fluoranthene increased abnormally in the spring and fall campaigns, which is presumably caused by the burning of Tibetan barley straw in the northwestern highlands. The backward trajectories over Tibetan areas in Qinghai and southwestern Gansu are consistent with this hypothesis. In addition, this study reported for the first time that the burning of Tibetan barley straw has become a seasonal contributor to air pollution in northwestern China and is participating in the atmospheric transport of air pollutants driven by the monsoon in East Asia, which urgently requires further research.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Ásia Oriental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano
15.
Artigo em Inglês | MEDLINE | ID: mdl-33466956

RESUMO

Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this study, the non-volcanic eruption period was taken as the target and daily PM2.5 samples were collected from 24 November to 21 December 2016. The daily concentrations in PM2.5 of Æ©PAHs, Æ©NPAHs, and Æ©WSIIs ranged from 0.36 to 2.90 ng/m3, 2.12 to 22.3 pg/m3, and 1.96 to 11.4 µg/m3, respectively. Through the results of the diagnostic ratio analyses of the PAHs, NPAHs, and WSIIs and the backward trajectory analysis of the air masses arriving in Kirishima, the emission sources of PAHs, NPAHs, and WSIIs in PM2.5 in Kirishima were influenced by the coal burning that came from the East Asian continent, although there was no influence from volcanic emission sources during the sampling period. The total benzo[a]pyrene (BaP)-equivalent concentration was lower than many other cities but the health risks in Kirishima were nonetheless notable. These findings are very important for future research on PM samples during the inactive Asian monsoon and volcanic eruption periods, to further understand the characteristics of air pollutants in Kirishima, and to contribute to the improvement in health of residents and a reduction in the atmospheric circulation of air pollutants in East Asia.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Ásia Oriental , Íons , Japão , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Água
16.
Biomed Chromatogr ; 35(1): e5038, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33242350

RESUMO

The air pollution associated with PM2.5 kills 7 million people every year in the world, especially threatening the health of children in developing countries. However, the current air quality standards depend mainly on particle size. PM2.5 contains many carcinogenic/mutagenic polycyclic aromatic hydrocarbons (PAHs) and their derivatives such as nitropolycyclic aromatic hydrocarbons and oxygenated PAHs. Among them, environmental standards and guidelines have been set for benzo[a]pyrene by few countries and international organizations. Recent research reports showed that these pollutants are linked to diseases other than lungs, and new methods have been developed for determining trace levels of not only PAHs but also their derivatives. It is time to think about the next-generation environmental standards. This article aims to (a) describe recent studies on the health effects of PAHs and their derivatives other than cancer, (b) describe new analytical methods for PAH derivatives, and (c) discuss the targets for the next-generation standards.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Saúde Ambiental/normas , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Humanos
17.
Chemosphere ; 264(Pt 1): 128427, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33002800

RESUMO

Eleven years (2005-2015) of data from long-term monitoring at a Japanese remote background site in Wajima, were analyzed to investigate temporal trends and sources. Water-soluble inorganic ions (WSIIs) were analyzed for aerosol chemical composition. The total WSIIs concentration was 7.93 ± 3.93 µg/m3, accounting for 42.3% of TSP mass, ranged from 11.4 to 93.9%. SO42- is the most abundant ion, contributing a total WSII mass from 18.0 to 79.8%, and non-sea-salt (nss-) SO42- contributed from 63.6% to 99.6% of total SO42-, which was related to human activities on the Asian continent and the effects of marine precursors in spring and summer, respectively. NO3- and NH4+ contribute 6.3 and 7.4% of the total WSIIs and were affected by long-range transport and local sources as well. The increasing trend of Na+ and Cl- indicates the increased influence of sea salt, which is caused by more frequent strong winds. K+ is mainly produced from biomass burning with a stable seasonal variation, Ca2+ as the characteristic ion of dust has the highest concentration in spring. Mg2+ comes from minerals and marine sources during spring and summer, respectively. This work describes in detail the annual change trend of the WSIIs of atmospheric particles in the Wajima area, seasonal characteristics, and source contributions, provide a comprehensive understanding of long-term variation in atmospheric particulate.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Íons/análise , Japão , Material Particulado/análise , Estações do Ano
18.
J Environ Sci (China) ; 99: 72-79, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183718

RESUMO

This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of Æ©PAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of Æ©PAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano
19.
Artigo em Inglês | MEDLINE | ID: mdl-33172174

RESUMO

Daily PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of 2017 and 2019, to compare the characteristics of air pollutants among different regions and to determine the possible variation during the long-range transport process. Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and water-soluble inorganic ions (WSIIs) were analyzed. Despite the PM2.5 concentrations at FAMS (8.90-78.5 µg/m3) being higher than those at WAMS (2.33-21.2 µg/m3) in the winter monsoon period, the average concentrations of ∑PAHs, ∑NPAHs, and ∑WSIIs were similar between the two sites. Diagnostic ratios indicated PAHs mainly originated from traffic emissions and mostly aged, whereas NPAHs were mostly secondarily formed during long-range transport. WSIIs at WAMS were mainly formed via the combustion process and secondary reactions, whereas those at FAMS mainly originated from sea salt and dust. Backward trajectories revealed the air masses could not only come from Asian continental coastal regions but also distant landlocked areas in the winter monsoon period, whereas most came from the ocean in the summer monsoon period. These findings can provide basic data for the establishment of prediction models of transboundary air pollutants in East Asia.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Humanos , Íons , Japão , Estações do Ano , Água
20.
Artigo em Inglês | MEDLINE | ID: mdl-32824924

RESUMO

The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased according to one of two seasonal trends, which were either an increase in PAHs during the cold period, influenced by heating, or a PAH enrichment during the wet period due to higher run-off inputs. The major PAH source was the combustion of fossil fuels and biomass, but a minor input of petrogenic PAHs in some seasons was observed. Higher PAH concentrations were observed in fresh and brackish water compared to the saline waters in the Tumen River estuary, while the PAH concentrations in both types of water were similar in the Partizanskaya River estuary, suggesting different pathways of PAH input into the estuaries. The annual riverine PAH mass flux amounted to 0.028 t/year and 2.5 t/year for the Partizanskaya River and the Tumen River, respectively. The riverine PAH contribution to the coastal water of the Sea of Japan depends on the river discharge rather than the PAH level in the river water.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Japão , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...