Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(5): 1286-1330, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419861

RESUMO

Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.

2.
Int J Biol Macromol ; 261(Pt 1): 129146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176489

RESUMO

The study explores the synergy of biobased polymers and hydrogels for water purification. Polymer nanomaterial's, synthesized by combining acrylamide copolymer with maleic anhydride, were integrated into sodium alginate biopolymer using an eco-friendly approach. Crosslinking agents, calcium chloride and glutaraladehyde, facilitated seamless integration, ensuring non-toxicity, high adsorption performance, and controlled capacity. This innovative combination presents a promising solution for clean and healthy water supplies, addressing the critical need for sustainable environmental practices in water purification. In addition, the polymer sodium alginate hydrogel (MAH@AA-P/SA/H) underwent characterization via the use of several analytical procedures, such as FTIR, XPS, SEM, EDX and XRD. Adsorption studies were conducted on metals and dyes in water, and pollutant removal methods were explored. We investigated several variables (such as pH, starting concentration, duration, and absorbent quantity) affect a material's capacity to be adsorbed. Moreover, the maximum adsorption towards Cu2+ is 754 mg/g while for Cr6+ metal ions are 738 mg/g, while the adsorption towards Congo Red and Methylene Blue dye are 685 mg/g and 653 mg/g correspondingly, within 240 min. Adsorption results were further analyzed using kinetic and isothermal models, which showed that MAH@AA-P/SA/H adsorption is governed by a chemisorption process. Hence, the polymer prepared from sodium alginate hydrogel (MAH@AA-P/SA/H) has remarkable properties as a versatile material for the significantly elimination of harmful contaminants from dirty water.


Assuntos
Hidrogéis , Poluentes Químicos da Água , Hidrogéis/química , Anidridos Maleicos , Corantes/química , Alginatos/química , Acrilamida , Metais , Íons , Polímeros , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
3.
Int J Biol Macromol ; 254(Pt 2): 127153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37778574

RESUMO

Clean and safe water resources are essential for environmental safety and human health. Hydrogels and biomass polymers have attracted considerable attention in recent years, considering their nontoxicity, controllable performance, and high adsorption capacity. The interpenetrating network described here is a combination of a biomass polymer and a hydrogel adsorbent was established, the biomass polymer microspheres were first prepared with the combination of biomass monomer trans-anethole and maleic anhydride copolymer. A simple, environmentally friendly, and facile method of incorporating biomass polymer into sodium alginate biopolymer was developed by introducing the cross-linking agents calcium chloride and glutaraldehyde into the biomass polymer. Furthermore, the biomass polymer sodium alginate hydrogel (BP@SA/H) was characterized by FTIR, XPS, SEM, and XRD. In order to test materials' performance, the removal of pollutants and the adsorption study were also investigated after and before adsorption toward metals and dyes in water. We examined the factors influencing the materials, adsorption capability, such as initial concentration, time, absorbent amount, and pH. Moreover, the maximum adsorption values for Pb+2 and Cd+2 were 734.9 and 722 mg/g. While the adsorption toward RhB dye are 745 mg/g. In addition, the adsorption results were investigated using kinetic and isothermal models, demonstrating that biomass polymer hydrogel adsorption is chemisorption. Therefore, the as-developed biomass polymer sodium alginate hydrogel (BP@SA/H) is an exceptional multifunctional material that can be used to remove hazardous pollutants from wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Águas Residuárias , Corantes/química , Polímeros/química , Hidrogéis/química , Alginatos/química , Metais , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
4.
Heliyon ; 9(11): e21452, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027741

RESUMO

The water-based Cu and CoFe2O4 hybrid nano liquid flow across a permeable curved sheet under the consequences of inertial and Lorentz forces has been reported in this analysis. The Joule heating and Darcy Forchheimer effects on fluid flow have been also examined. In the presence of copper (Cu) and cobalt iron oxide (CoFe2O4) nanoparticles, the hybrid nano liquid is synthesized. Radiation and heat source features are additionally incorporated to perform thermodynamics analysis in detail. The second law of thermodynamics is employed in order to estimate the overall generation of entropy. The nonlinear system of PDEs (partial differential equations) is transformed into a dimensionally-free set of ODEs (ordinary differential equations) by employing a similarity framework. The Mathematica built in package ND Solve method is applied to compute the resulting set of nonlinear differential equations numerically. Along with the velocity, and temperature profiles, skin friction and Nusselt number are also computed. Figures and tables illustrate the effects of flow factors on important profiles. Evidently, the outcomes reveal that hybrid nanofluid (Cu + CoFe2O4+H2O) is more progressive than nanofluid (Cu + H2O) and base fluid (H2O) in thermal phenomena. Furthermore, the velocity profile is improved with the greater values of curvature parameter, while the inverse trend is observed against the magnetic parameters. Also, the velocity and energy distribution of hybrid nano-liquid flow boosts with the inclusion of Cu and CoFe2O4 nanoparticles into the base fluid. Velocity distribution diminishes with the increment of volume friction. For high values of inertial factor, skin friction improve while velocity and Nusselt number declines.

5.
Adv Colloid Interface Sci ; 319: 102969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598456

RESUMO

Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.

6.
Chem Rec ; 23(5): e202200171, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37066717

RESUMO

Graphitic carbon nitride (g-C3 N4 ) has gained tremendous interest in the sector of power transformation and retention, because of its distinctive stacked composition, adjustable electronic structure, metal-free feature, superior thermodynamic durability, and simple availability. Furthermore, the restricted illumination and extensive recombination of photoexcitation electrons have inhibited the photocatalytic performance of pure g-C3 N4 . The dimensions of g-C3 N4 may impact the field of electronics confinement; as a consequence, g-C3 N4 with varying dimensions shows unique features, making it appropriate for a number of fascinating uses. Even if there are several evaluations emphasizing on the fabrication methods and deployments of g-C3 N4 , there is certainly an insufficiency of a full overview, that exhaustively depicts the synthesis and composition of diverse aspects of g-C3 N4 . Consequently, from the standpoint of numerical simulations and experimentation, several legitimate methodologies were employed to deliberately develop the photocatalyst and improve the optimal result, including elements loading, defects designing, morphological adjustment, and semiconductors interfacing. Herein, this evaluation initially discusses different dimensions, the physicochemical features, modifications and interfaces design development of g-C3 N4 . Emphasis is given to the practical design and development of g-C3 N4 for the various power transformation and inventory applications, such as photocatalytic H2 evolution, photoreduction of CO2 source, electrocatalytic H2 evolution, O2 evolution, O2 reduction, alkali-metal battery cells, lithium-ion batteries, lithium-sulfur batteries, and metal-air batteries. Ultimately, the current challenges and potential of g-C3 N4 for fuel transformation and retention activities are explored.

7.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985660

RESUMO

In this study, various techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and water-contact-angle goniometry (WCAG), were used to characterize the crystalline structure and morphological properties of terbium-doped cerium magnesium aluminate (Ce0.67Tb0.33MgAl11O19 or CMAT) in powder form. The results demonstrated that CMAT was successfully synthesized with a particle size of less than 5 µm and a fully evident distribution of elements, as revealed by the SEM images. This was further confirmed by the XRD and HRTEM images. XPS analysis confirmed the presence of all necessary components in CMAT. Additionally, WCAG results showed that the contact angle of CMAT was more hydrophilic with a value of 8.4°. To evaluate its performance, CMAT particles were dispersed in a Polyethersulfone (PES) solution and used to modify a PES ultrafiltration membrane through a phase-inversion method. The resulting membranes were characterized by SEM, atomic force microscopy (AFM), thermogravimetric analysis (TGA), WCAG, and permeability performance and fouling experiments. The addition of CMAT to the PES membranes did not have a significant effect on the structure of the SEM images of the top layer and cross-section of surface properties. However, increasing the concentration of CMAT improved the membrane surface roughness in AFM, and the modified membranes had the ability to resist fouling. The addition of CMAT did not lead to significant energy loss, indicating that the heat flux loss observed can indeed be explained by the amount of C-OH on the PES membrane's surface. The contact angle of the membranes became more hydrophilic with increasing concentration of CMAT from PES G0 to PES G7. The PES origin membrane showed a higher permeation than the membranes mixed with CMAT, and the modified membranes with CMAT displayed significant fouling resistance.

8.
Environ Res ; 221: 115213, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610540

RESUMO

A special type of two-dimensional (2D) material based conducting polymer was constructed by green synthesis and in-situ polymerization techniques. The 2D Molybdenum Disulfide (MoS2) were first synthesized with the combination of, ammonium tetrathiomolybdate dissolved in 20 mL algae extract under stirring. After stirring for about 2 h, and then finally sulfurization was initiated using sulfur powder in 20 mL of sulfuric solution and stirred for 8 h. The resulting black precipitates of MoS2 were collected by centrifugation at 5000 rpm. Moreover, the prepared MoS2 was functionalized with glycidyl methacrylate (GMA) and form the MoS2@PGMA. Further, the MoS2@PGMA is combined with polyaniline (PANI) to form conducting polymer grafted thin film nanosheets named MoS2@PGMA/PANI with a thickness in micrometer size through grafting method. The prepared materials were characterized by SEM, FTIR, XRD, XPS and EDX techniques. To check the performance of materials the adsorption study was performed. Moreover, the adsorption study toward Cu2+ and Cd2+ showed a tremendous results and the maximum adsorption was 307.7 mg/g and 214.7 mg/g respectively. In addition, the pseudo-first and second order models as well as the adsorption isotherm were investigated using the Langmuir and Freundlich model. The results were best fitted with the pseudo-second order and Langmuir models. The regeneration study was also conducted and MoS2@PGMA/PANI nanosheets can be easily recycled and restored after five successful recycling. The established methodology for preparing the 2D materials and conducting polymer based MoS2@PGMA/PANI nanosheets is expected to be applicable for other multiple applications.


Assuntos
Molibdênio , Águas Residuárias , Metais , Polímeros , Íons
9.
Chem Rec ; 23(2): e202200149, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408911

RESUMO

Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.

10.
Chem Rec ; 23(1): e202200143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285706

RESUMO

The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.

11.
Chemosphere ; 308(Pt 2): 136358, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087730

RESUMO

According to World Health Organization (WHO) survey, air pollution has become the major reason of several fatal diseases, which had led to the death of 7 million peoples around the globe. The 9 people out of 10 breathe air, which exceeds WHO recommendations. Several strategies are in practice to reduce the emission of pollutants into the air, and also strict industrial, scientific, and health recommendations to use sustainable green technologies to reduce the emission of contaminants into the air. Photocatalysis technology recently has been raised as a green technology to be in practice towards the removal of air pollutants. The scientific community has passed a long pathway to develop such technology from the material, and reactor points of view. Many classes of photoactive materials have been suggested to achieve such a target. In this context, the contribution of conjugated polymers (CPs), and their modification with some common inorganic semiconductors as novel photocatalysts, has never been addressed in literature till now for said application, and is critically evaluated in this review. As we know that CPs have unique characteristics compared to inorganic semiconductors, because of their conductivity, excellent light response, good sorption ability, better redox charge generation, and separation along with a delocalized π-electrons system. The advances in photocatalytic removal/reduction of three primary air-polluting compounds such as CO2, NOX, and VOCs using CPs based photocatalysts are discussed in detail. Furthermore, the synergetic effects, obtained in CPs after combining with inorganic semiconductors are also comprehensively summarized in this review. However, such a combined system, on to better charges generation and separation, may make the Adsorb & Shuttle process into action, wherein, CPs may play the sorbing area. And, we hope that, the critical discussion on the further enhancement of photoactivity and future recommendations will open the doors for up-to-date technology transfer in modern research.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Dióxido de Carbono , Catálise , Humanos , Polímeros , Tecnologia
12.
Chem Rec ; 22(12): e202200097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103617

RESUMO

Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.

13.
Sci Rep ; 12(1): 14629, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028555

RESUMO

The Jeffrey fluid model is capable of accurately characterizing the stress relaxation behavior of non-Newtonian fluids, which a normal viscous fluid model is unable to perform. The primary objective of this paper is to provide a comprehensive investigation into the effects of MHD and thermal radiation on the 3D Jeffery fluid flow over a permeable irregular stretching surface. The consequences of the Darcy effect, variable thickness and chemical reaction are also considered. The phenomena have been modeled as a nonlinear system of PDEs. Using similarity substitution, the modeled equations are reduced to a dimensionless system of ODEs. The parametric continuation method (PCM) is used to determine the numerical solution to the obtained sets of nonlinear differential equations. The impact of physical parameters on temperature, velocity and mass profiles are presented through Figures and Tables. It has been noticed that the energy profile magnifies with the increment of porosity term, thermal radiation and heat source term, while diminishing with the flourishing upshot of power index and Deborah number. Furthermore, the porosity term and wall thickness parameter enhance the skin friction.

15.
J Colloid Interface Sci ; 627: 621-629, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35872419

RESUMO

The development of copolymerized carbon nitride (CN)-based photocatalysts may support advances in photocatalytic overall water splitting. However, the recombination of charge carriers is the main bottleneck that reduces its overall photocatalytic activity. To overcome this problem, the construction of heterojunction technology has emerged as an effective approach to reduce the charge carrier recombination, thereby improving charge separation and transport efficiency. In this work, an innovative heterojunction was prepared between Quinolinic acid (QA) modified CN (CN-QAx) and novel nanorod-shaped bismuth vanadate (BiVO4) (BiVO4/CN-QAx) for overall water splitting through a simple in-situ solvent evaporation technique. The obtained results show that the synthesized samples have efficient and improved activities for releasing H2 (862.1 µmol/h) and O2 (31.58 µmol/h) under visible light irradiation. Furthermore, an exceptional apparent quantum yield (AQY) of 64.52 % has been recorded for BiVO4/CN-QA7.0 at 420 nm, which might be due to the substantial isolation of photoinducedcharge carriers. Therefore, this work opens up a new channel toward efficient CN-based photocatalysts in the sustainable energy production processes.

16.
J Colloid Interface Sci ; 624: 411-422, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660909

RESUMO

Well-organized water splitting semiconducting photocatalyst is an important concept, but stimulating aimed at decisive energy and environmental emergencies. In this context, visible light-based photocatalytic water splitting with low-dimensional semiconducting materials is proposed to produce sustainable energy. Here we optimized the sequential of organic electron-rich heterocyclic monomer namely benzothiadiazole (BTD) quenched within polymeric carbon nitride (PCN) semiconductor via copolymerization, thereby assembling a sanctum of donor-π-acceptor (D-π-A) photocatalysts. The selection of BTD is based on the benzene ring, which consequently anticipating a π cross-linker unit for hydrogen and oxygen evolution. A hydrogen evolution rates (HER) of 88.2 µmol/h for pristine PCN and 744.2 µmol/h for PCN-BTD008 (eight times higher than pure PCN) are observed. Additionally, a remarkable apparent quantum yield (AQY) of about 58.6% at 420 nm has been observed for PCN-BTD008. Likewise, the oxygen evolution rate (OER) data reflect the generation of 0.2 µmol/h1 (visible) and 1.6 µmol/h1 (non-visible) for pure PCN. Though, OER of PCN-BTD008 is found to be 2.2 µmol/h1 (visible) and 14.8 µmol/h1 (non-visible), which are economically better than pure PCN. As such, the results show an important step toward modifying the design and explain a vital part of the D-π-A scheme at a balanced theme for fruitful photocatalysts intended for future demand.

17.
Chem Rec ; 22(7): e202100310, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35138017

RESUMO

Being one of the foremost enticing and intriguing innovations, heterogeneous photocatalysis has also been used to effectively gather, transform, and conserve sustainable sun's radiation for the production of efficient and clean fossil energy as well as a wide range of ecological implications. The generation of solar fuel-based water splitting and CO2 photoreduction is excellent for generating alternative resources and reducing global warming. Developing an inexpensive photocatalyst can effectively split water into hydrogen (H2 ), oxygen (O2 ) sources, and carbon dioxide (CO2 ) into fuel sources, which is a crucial problem in photocatalysis. The metal-free g-C3 N4 photocatalyst has a high solar fuel generation potential. This review covers the most recent advancements in g-C3 N4 preparation, including innovative design concepts and new synthesis methods, and novel ideas for expanding the light absorption of pure g-C3 N4 for photocatalytic application. Similarly, the main issue concerning research and prospects in photocatalysts based g-C3 N4 was also discussed. The current dissertation provides an overview of comprehensive understanding of the exploitation of the extraordinary systemic and characteristics, as well as the fabrication processes and uses of g-C3 N4 .

18.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34947595

RESUMO

Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU-DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron-hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.

19.
J Colloid Interface Sci ; 597: 39-47, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33862446

RESUMO

The development of superior heterogeneous catalyst for hydrogen (H2) evolution is a significant feature and challenging for determining the energy and environmental crises. However, the dumping of numerous lethal colorants (dye) as of textile manufacturing has fascinated widespread devotion-aimed water pollution anticipation and treatment. In this regard, a photocatalytic H2 evolution by visible light using low-dimensional semiconducting materials having pollutant degradable capacity for Rhodamine B dyes (RhB) has been anticipated as a route towards environmental aspect. Here we fabricated the incorporation of organic electron-rich heterocyclic monomer 2,6-dimethylmorpholine (MP), inside electron-poor graphitic carbon nitride (g-CN) semiconductor by solid-state co-polymerization. The supremacy of copolymerization process was successfully examined via absorbent, calculated band gap, and migration of electrons on the photocatalytic performance of as-constructed CN-MP copolymer. The density functional theory (DFT) calculation provides extra support as evident for the successful integration of MP into the g-CN framework by this means-reduced band gap upon co-polymerization. The hydrogen evolution rate (HER) for g-CN was found as 115.2 µmol/h, whereas for CN-PM0.1was estimated at 641.2 µmol/h (six times higher). In particular, the pseudo-order kinetic constant of CN-MP0.1 for photodegradation of RhB was two times higher than that ofg-CN. Results show an important step toward tailor-designed and explain the vital role of the D-A system for the rational motifs of productive photocatalysts with effective pollutant degradable capability for future demand.

20.
Int J Occup Saf Ergon ; 27(3): 817-830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31251122

RESUMO

Purpose. This article attempts to elucidate the nature of chemicals causing major and minor skin burns, and their associated characterization across different industries, using Fujian provincial hospitals' admission and outpatient department records. Materials and methods. Data were collected from the provincial hospitals of Fujian through a questionnaire, sent via email, from June 1, 2017 to November 30, 2017. The collected responses were statistically analyzed using SPSS version 19 through the interquartile range, median, Mann-Whitney U test and Fisher's exact test with two-tailed significance. Results and conclusions. The results of 306 collected responses reveal that the majority of skin burn cases are due to a lack of technical education and professional training among workers handling chemicals. This study suggests that management's effective supervision and governmental regulations may help to prevent chemical skin burns at work, and can further be controlled by hiring professional workers alongside providing training to them in chemical handling as well as using protective equipment and developing appropriate management policies to improve victims' well-being and quality of life. Findings will help workers, doctors, hospitals, industries, government and other stakeholders to understand and control chemical hazards on site to minimize the risks of chemical skin burn incidents.


Assuntos
Queimaduras Químicas , Pacientes Ambulatoriais , Queimaduras Químicas/epidemiologia , Hospitalização , Humanos , Qualidade de Vida , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...