Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 2(11): e0000306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910466

RESUMO

Urine culture is often considered the gold standard for detecting the presence of bacteria in the urine. Since culture is expensive and often requires 24-48 hours, clinicians often rely on urine dipstick test, which is considerably cheaper than culture and provides instant results. Despite its ease of use, urine dipstick test may lack sensitivity and specificity. In this paper, we use a real-world dataset consisting of 17,572 outpatient encounters who underwent urine cultures, collected between 2015 and 2021 at a large multi-specialty hospital in Abu Dhabi, United Arab Emirates. We develop and evaluate a simple parsimonious prediction model for positive urine cultures based on a minimal input set of ten features selected from the patient's presenting vital signs, history, and dipstick results. In a test set of 5,339 encounters, the parsimonious model achieves an area under the receiver operating characteristic curve (AUROC) of 0.828 (95% CI: 0.810-0.844) for predicting a bacterial count ≥ 105 CFU/ml, outperforming a model that uses dipstick features only that achieves an AUROC of 0.786 (95% CI: 0.769-0.806). Our proposed model can be easily deployed at point-of-care, highlighting its value in improving the efficiency of clinical workflows, especially in low-resource settings.

2.
Intell Based Med ; 6: 100065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721825

RESUMO

Clinical evidence suggests that some patients diagnosed with coronavirus disease 2019 (COVID-19) experience a variety of complications associated with significant morbidity, especially in severe cases during the initial spread of the pandemic. To support early interventions, we propose a machine learning system that predicts the risk of developing multiple complications. We processed data collected from 3,352 patient encounters admitted to 18 facilities between April 1 and April 30, 2020, in Abu Dhabi (AD), United Arab Emirates. Using data collected during the first 24 h of admission, we trained machine learning models to predict the risk of developing any of three complications after 24 h of admission. The complications include Secondary Bacterial Infection (SBI), Acute Kidney Injury (AKI), and Acute Respiratory Distress Syndrome (ARDS). The hospitals were grouped based on geographical proximity to assess the proposed system's learning generalizability, AD Middle region and AD Western & Eastern regions, A and B, respectively. The overall system includes a data filtering criterion, hyperparameter tuning, and model selection. In test set A, consisting of 587 patient encounters (mean age: 45.5), the system achieved a good area under the receiver operating curve (AUROC) for the prediction of SBI (0.902 AUROC), AKI (0.906 AUROC), and ARDS (0.854 AUROC). Similarly, in test set B, consisting of 225 patient encounters (mean age: 42.7), the system performed well for the prediction of SBI (0.859 AUROC), AKI (0.891 AUROC), and ARDS (0.827 AUROC). The performance results and feature importance analysis highlight the system's generalizability and interpretability. The findings illustrate how machine learning models can achieve a strong performance even when using a limited set of routine input variables. Since our proposed system is data-driven, we believe it can be easily repurposed for different outcomes considering the changes in COVID-19 variants over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...