Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 17(2): 312-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447773

RESUMO

BACKGROUND: Current noninvasive brain stimulation methods are incapable of directly modulating subcortical brain regions critically involved in psychiatric disorders. Transcranial Focused Ultrasound (tFUS) is a newer form of noninvasive stimulation that could modulate the amygdala, a subcortical region implicated in fear. OBJECTIVE: We investigated the effects of active and sham tFUS of the amygdala on fear circuit activation, skin conductance responses (SCR), and self-reported anxiety during a fear-inducing task. We also investigated amygdala tFUS' effects on amygdala-fear circuit resting-state functional connectivity. METHODS: Thirty healthy individuals were randomized in this double-blinded study to active or sham tFUS of the left amygdala. We collected fMRI scans, SCR, and self-reported anxiety during a fear-inducing task (participants viewed red or green circles which indicated the risk of receiving an aversive stimulus), as well as resting-state scans, before and after tFUS. RESULTS: Compared to sham tFUS, active tFUS was associated with decreased (pre to post tFUS) blood-oxygen-level-dependent fMRI activation in the amygdala (F(1,25) = 4.86, p = 0.04, η2 = 0.16) during the fear task, and lower hippocampal (F(1,27) = 4.41, p = 0.05, η2 = 0.14), and dorsal anterior cingulate cortex (F(1,27) = 6.26, p = 0.02; η2 = 0.19) activation during the post tFUS fear task. The decrease in amygdala activation was correlated with decreased subjective anxiety (r = 0.62, p = 0.03). There was no group effect in SCR changes from pre to post tFUS (F(1,23) = 0.85, p = 0.37). The active tFUS group also showed decreased amygdala-insula (F(1,28) = 4.98, p = 0.03) and amygdala-hippocampal (F(1,28) = 7.14, p = 0.01) rsFC, and increased amygdala-ventromedial prefrontal cortex (F(1,28) = 3.52, p = 0.05) resting-state functional connectivity. CONCLUSIONS: tFUS can change functional connectivity and brain region activation associated with decreased anxiety. Future studies should investigate tFUS' therapeutic potential for individuals with clinical levels of anxiety.


Assuntos
Tonsila do Cerebelo , Medo , Resposta Galvânica da Pele , Imageamento por Ressonância Magnética , Humanos , Medo/fisiologia , Masculino , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Feminino , Adulto , Método Duplo-Cego , Adulto Jovem , Resposta Galvânica da Pele/fisiologia , Ansiedade/fisiopatologia , Ansiedade/diagnóstico por imagem , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem
2.
iScience ; 27(2): 108980, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333697

RESUMO

Light is one of the strongest cues for entrainment of circadian clocks. While some insect species rely only on visual input, others like Drosophila melanogaster use both the visual system and the deep-brain blue-light photoreceptor cryptochrome for entraining circadian rhythms. Here, we used the monarch butterfly Danaus plexippus (dp), which possesses a light-sensitive cryptochrome 1 (dpCry1), to test the conservation of mechanisms of clock entrainment. We showed that loss of functional dpCry1 reduced the amplitude and altered the phase of adult eclosion rhythms, and disrupted brain molecular circadian rhythms. Robust rhythms could be restored by entrainment to temperature cycles, indicating a likely functional core circadian clock in dpCry1 mutants. We also showed that rhythmic flight activity was less robust in dpCry1 mutants, and that visual impairment in dpNinaB1 mutants impacted flight suppression at night. Our data suggest that dpCRY1 is a major photoreceptor for light-entrainment of the monarch circadian clock.

3.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260399

RESUMO

RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35176489

RESUMO

As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.


Assuntos
Caenorhabditis elegans , Doenças Neurodegenerativas , Animais , Caenorhabditis elegans/genética , Longevidade , Doenças Neurodegenerativas/genética
5.
Nat Commun ; 12(1): 771, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536422

RESUMO

Many animals use the Earth's geomagnetic field for orientation and navigation. Yet, the molecular and cellular underpinnings of the magnetic sense remain largely unknown. A biophysical model proposed that magnetoreception can be achieved through quantum effects of magnetically-sensitive radical pairs formed by the photoexcitation of cryptochrome (CRY) proteins. Studies in Drosophila are the only ones to date to have provided compelling evidence for the ultraviolet (UV)-A/blue light-sensitive type 1 CRY (CRY1) involvement in animal magnetoreception, and surprisingly extended this discovery to the light-insensitive mammalian-like type 2 CRYs (CRY2s) of both monarchs and humans. Here, we show that monarchs respond to a reversal of the inclination of the Earth's magnetic field in an UV-A/blue light and CRY1, but not CRY2, dependent manner. We further demonstrate that both antennae and eyes, which express CRY1, are magnetosensory organs. Our work argues that only light-sensitive CRYs function in animal light-dependent inclination-based magnetic sensing.


Assuntos
Borboletas/fisiologia , Criptocromos/metabolismo , Proteínas de Insetos/metabolismo , Campos Magnéticos , Orientação/fisiologia , Sensação/fisiologia , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/efeitos da radiação , Borboletas/genética , Borboletas/efeitos da radiação , Criptocromos/genética , Olho/efeitos da radiação , Humanos , Proteínas de Insetos/genética , Luz , Mutação , Orientação/efeitos da radiação , Sensação/genética , Sensação/efeitos da radiação , Homologia de Sequência de Aminoácidos
6.
Proc Natl Acad Sci U S A ; 116(50): 25214-25221, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767753

RESUMO

Seasonal adaptation to changes in light:dark regimes (i.e., photoperiod) allows organisms living at temperate latitudes to anticipate environmental changes. In nearly all animals studied so far, the circadian system has been implicated in measurement and response to the photoperiod. In insects, genetic evidence further supports the involvement of several clock genes in photoperiodic responses. Yet, the key molecular pathways linking clock genes or the circadian clock to insect photoperiodic responses remain largely unknown. Here, we show that inactivating the clock in the North American monarch butterfly using loss-of-function mutants for the circadian activators CLOCK and BMAL1 and the circadian repressor CRYPTOCHROME 2 abolishes photoperiodic responses in reproductive output. Transcriptomic approaches in the brain of monarchs raised in long and short photoperiods, summer monarchs, and fall migrants revealed a molecular signature of seasonal-specific rhythmic gene expression that included several genes belonging to the vitamin A pathway. We found that the rhythmic expression of these genes was abolished in clock-deficient mutants, suggesting that the vitamin A pathway operates downstream of the circadian clock. Importantly, we showed that a CRISPR/Cas9-mediated loss-of-function mutation in the gene encoding the pathway's rate-limiting enzyme, ninaB1, abolished photoperiod responsiveness independently of visual function in the compound eye and without affecting circadian rhythms. Together, these results provide genetic evidence that the clock-controlled vitamin A pathway mediates photoperiod responsiveness in an insect. Given previously reported seasonal changes associated with this pathway in the mammalian brain, our findings suggest an evolutionarily conserved function of vitamin A in animal photoperiodism.


Assuntos
Encéfalo/metabolismo , Borboletas/fisiologia , Proteínas de Insetos/metabolismo , Proteínas Circadianas Period/metabolismo , Fotoperíodo , Vitamina A/metabolismo , Animais , Borboletas/genética , Relógios Circadianos , Proteínas de Insetos/genética , Proteínas Circadianas Period/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...