Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309267, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639398

RESUMO

Single-molecule localization microscopy has proved promising to unravel the dynamics and molecular architecture of thin biological samples down to nanoscales. For applications in complex, thick biological tissues shifting single-particle emission wavelengths to the shortwave infrared (SWIR also called NIR II) region between 900 to 2100 nm, where biological tissues are more transparent is key. To date, mainly single-walled carbon nanotubes (SWCNTs) enable such applications, but they are inherently 1D objects. Here, 0D ultra-small luminescent gold nanoclusters (AuNCs, <3 nm) and ≈25 nm AuNC-loaded-polymeric particles that can be detected at the single-particle level in the SWIR are presented. Thanks to high brightness and excellent photostability, it is shown that the dynamics of the spherical polymeric particles can be followed at the single-particle level in solution at video rates for minutes. We compared single particle tracking of AuNC-loaded-polymeric particles with that of SWCNT diffusing in agarose gels demonstrating the specificity and complementarity of diffusion properties of these SWIR-emitting nano-objects when exploring a complex environment. This extends the library of photostable SWIR emitting nanomaterials to 0D nano-objects of variable size for single-molecule localization microscopy in the second biological window, opening unprecedented possibilities for mapping the structure and dynamics of complex biological systems.

2.
Langmuir ; 39(46): 16532-16542, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37955543

RESUMO

Polymer nanoparticles (NPs) loaded with drugs and contrast agents have become key tools in the advancement of nanomedicine, requiring robust technologies for their synthesis. Nanoprecipitation is a particularly interesting technique for the assembly of loaded polymer NPs, which is well-known to proceed under kinetic control, with a strong influence of the assembly conditions. On the other hand, the nature of the used polymer also influences the outcome of nanoprecipitation. Here, we investigated systematically the relative effects of mixing of the organic and aqueous phases and polymer chemistry on the formation of polymer nanocarriers. For this, two mixing schemes, manual mixing and microfluidic mixing using an impact-jet micromixer, were first evaluated, showing mixing times of several tens of milliseconds and a few milliseconds, respectively. Copolymers of ethyl methacrylate with charged and hydrophilic groups and different polyesters (poly(d-l-lactide-co-glycolide) and poly(lactic acid)) were combined with a fluorescent dye salt and tested for particle assembly using these "slow" and "fast" mixing methods. Our results showed that in the case of the most hydrophobic polymers, the speed of mixing had no significant influence on the size and loading of the formed NPs. In contrast, in the case of less hydrophobic polymers, faster mixing led to smaller NPs with better encapsulation. The switch between mixing and polymer-controlled assembly was directly correlated to the solubility limit of the polymers in acetonitrile-water mixtures, with a critical point for solubility limits between 15 and 20 vol % of water. Our results provide simple guidelines on how to evaluate the possible influence of polymer chemistry and mixing on the formation of loaded NPs, opening the way to fine-tune their properties and optimize their large-scale production.

3.
Int J Pharm ; 630: 122439, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36503846

RESUMO

Polymeric nanoparticles (NPs) are extremely promising for theranostic applications. However, their interest depends largely on their interactions with immune system, including the capacity to activate inflammation after their capture by macrophages. In the present study, we generated monodisperse poly(ethyl methacrylate) (PEMA) NPs loaded with hydrophobic photoluminescent gold nanoclusters (Au NCs) emitting in the NIR-II optical windows and studied their interaction in vitro with J774.1A macrophages. PEMA NPs showed an efficient time and dose dependent cellular uptake with up to 70 % of macrophages labelled in 24 h without detectable cell death. Interestingly, PEMA and Au-PEMA NPs induced an anti-inflammatory response and a strong down-regulation of nitric oxide level on lipopolysacharides (LPS) activated macrophages, but without influence on the levels of reactive oxygen species (ROS). These polymeric NPs may thus present a potential interest for the treatment of inflammatory diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas/química , Polímeros , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...