Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693783

RESUMO

OBJECTIVES: The pediatric gastroenterology workforce has grown in the last few decades. The North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) formed a task force to understand current pediatric gastroenterology organizations' practice structures. METHODS: 19-item electronic survey was distributed to NASPGHAN members who were clinical or academic division directors. RESULTS: 30% responded to the survey, all directors of academic practices. The median number of clinical sessions per week was seven sessions, and the median individual work relative value unit (wRVU) target for practices was 4000-4500. Healthcare team ratios compared to provider clinical full-time equivalent were reported as the following: Nursing 0.80, medical assistant 0.29, dietitian 0.29, social worker 0.14, and psychologist 0.13. Regarding compensation, 68.0% were salaried with bonus based on billing or director decision, 28.0% were salaried with no incentive pay, and 4.0% were salaried with a portion at risk if the target was not met, and a bonus was given if the target was met. Most practices participated in a wellness activity with the most common strategies being didactic lectures about physician burnout (80%), annual burnout check-ins (68%), and/or after-hours social activities (60%). CONCLUSIONS: Pediatric gastroenterology practices vary regarding clinical sessions per week and annual wRVU targets with the median at seven sessions per week and an annual goal of 4000-4500 wRVUs, similar to reported national benchmark goals at the 50th percentile. Healthcare teams, including nursing, medical assistants, dietitians, social workers, and psychologists, had similar ratios of staff to providers for all sizes and types of practices. Most practices are engaging in wellness initiatives.

2.
CA Cancer J Clin ; 74(3): 286-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108561

RESUMO

Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.


Assuntos
Analgésicos Opioides , Dor do Câncer , Humanos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Dor do Câncer/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/administração & dosagem , Dor Nociceptiva/tratamento farmacológico , Neoplasias/complicações , Manejo da Dor/métodos
3.
J Econ Entomol ; 116(5): 1706-1714, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37450624

RESUMO

Hemp is rapidly becoming a crop of global agricultural importance, and one of the more serious pests of this crop is hemp russet mite (HRM) Aculops cannabicola (Acari: Eriophyidae). Significant knowledge gaps presently exist regarding critical aspects of pest biology, quantification of crop damage, and efficacy of pesticides. Here we assessed the role of cannabidiol (CBD) on HRM performance, efficacy of sulfur treatments in field trials, and effect of hot water immersion with and without surfactants in reducing HRM counts on hemp cuttings. We found that HRM fecundity was reduced on a high-CBD cultivar compared with a low-CBD cultivar in detached leaf assays. In contrast, HRM fecundity and survival were not impacted when reared on high-CBD diet in artificial feeding assays. This suggests that cannabinoids other than CBD may aid in reduction of mite populations on the high-CBD cultivar. Sulfur sprays reduced HRM populations by up to 98% with the greatest effects seen in plants receiving dual applications, one during the vegetative period in July and the second at the initiation of flowering in August. Yields of plants treated with sulfur increased by up to 33%, and there was a further increase in cannabinoid production by up to 45% relative to untreated plants. Hot water immersion treatments with and without surfactant solution reduced HRM on infested hemp cuttings, and no phytotoxicity was observed. This study provides novel approaches to mitigating HRM at multiple stages in hemp production.

4.
J Bacteriol ; 205(6): e0011323, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37212679

RESUMO

Type VI secretion systems (T6SSs) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce autopermeabilization through unopposed activity of the Tle phospholipase effector. This hyperpermeability phenotype is T6SS dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyperpermeability because Δtli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyperpermeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG ß-spike protein. Together, these findings indicate that Tli has distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export. IMPORTANCE Gram-negative bacteria use type VI secretion systems deliver toxic effector proteins directly into neighboring competitors. Secreting cells also produce specific immunity proteins that neutralize effector activities to prevent autointoxication. Here, we show the Tli immunity protein of Enterobacter cloacae has two distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to block Tle lipase effector activity, while cytoplasmic Tli is required to activate the lipase prior to export. These results indicate Tle interacts transiently with its cognate immunity protein to promote effector protein folding and/or packaging into the secretion apparatus.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Fosfolipases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sinais Direcionadores de Proteínas , Lipase/metabolismo
5.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034769

RESUMO

Type VI secretion systems (T6SS) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce auto-permeabilization through unopposed activity of the Tle phospholipase effector. This hyper-permeability phenotype is T6SS-dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyper-permeability because Δ tli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyper-permeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli-dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG ß-spike protein. Together, these findings indicate that Tli has distinct functions depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export.

6.
Front Bioeng Biotechnol ; 11: 991784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873367

RESUMO

Lipopolysaccharide (LPS) is the unique feature that composes the outer leaflet of the Gram-negative bacterial cell envelope. Variations in LPS structures affect a number of physiological processes, including outer membrane permeability, antimicrobial resistance, recognition by the host immune system, biofilm formation, and interbacterial competition. Rapid characterization of LPS properties is crucial for studying the relationship between these LPS structural changes and bacterial physiology. However, current assessments of LPS structures require LPS extraction and purification followed by cumbersome proteomic analysis. This paper demonstrates one of the first high-throughput and non-invasive strategies to directly distinguish Escherichia coli with different LPS structures. Using a combination of three-dimensional insulator-based dielectrophoresis (3DiDEP) and cell tracking in a linear electrokinetics assay, we elucidate the effect of structural changes in E. coli LPS oligosaccharides on electrokinetic mobility and polarizability. We show that our platform is sufficiently sensitive to detect LPS structural variations at the molecular level. To correlate electrokinetic properties of LPS with the outer membrane permeability, we further examined effects of LPS structural variations on bacterial susceptibility to colistin, an antibiotic known to disrupt the outer membrane by targeting LPS. Our results suggest that microfluidic electrokinetic platforms employing 3DiDEP can be a useful tool for isolating and selecting bacteria based on their LPS glycoforms. Future iterations of these platforms could be leveraged for rapid profiling of pathogens based on their surface LPS structural identity.

7.
Plants (Basel) ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36840146

RESUMO

Emerald ash borer (Agrilus planipennis) is an invasive pest that has killed millions of ash trees (Fraxinus spp.) in the USA since its first detection in 2002. Although the current methods for trapping emerald ash borers (e.g., sticky traps and trap trees) and visual ground and aerial surveys are generally effective, they are inefficient for precisely locating and assessing the declining and dead ash trees in large or hard-to-access areas. This study was conducted to develop and evaluate a new tool for safe, efficient, and precise detection and assessment of ash decline and death caused by emerald ash borer by using aerial surveys with unmanned aerial systems (a.k.a., drones) and a deep learning model. Aerial surveys with drones were conducted to obtain 6174 aerial images including ash decline in the deciduous forests in West Virginia and Pennsylvania, USA. The ash trees in each image were manually annotated for training and validating deep learning models. The models were evaluated using the object recognition metrics: mean average precisions (mAP) and two average precisions (AP50 and AP75). Our comprehensive analyses with instance segmentation models showed that Mask2former was the most effective model for detecting declining and dead ash trees with 0.789, 0.617, and 0.542 for AP50, AP75, and mAP, respectively, on the validation dataset. A follow-up in-situ field study conducted in nine locations with various levels of ash decline and death demonstrated that deep learning along with aerial survey using drones could be an innovative tool for rapid, safe, and efficient detection and assessment of ash decline and death in large or hard-to-access areas.

9.
RNA ; 29(6): 777-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810234

RESUMO

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIPSeq) or m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) have revolutionized the m6A research field. Both of these methods are based on immunoprecipitation of fragmented mRNA. However, it is well documented that antibodies often have nonspecific activities, thus verification of identified m6A sites using an antibody-independent method would be highly desirable. We mapped and quantified the m6A site in the chicken ß-actin zipcode based on the data from chicken embryo MeRIPSeq results and our RNA-Epimodification Detection and Base-Recognition (RedBaron) antibody-independent assay. We also demonstrated that methylation of this site in the ß-actin zipcode enhances ZBP1 binding in vitro, while methylation of a nearby adenosine abolishes binding. This suggests that m6A may play a role in regulating localized translation of ß-actin mRNA, and the ability of m6A to enhance or inhibit a reader protein's RNA binding highlights the importance of m6A detection at nucleotide resolution.


Assuntos
Actinas , Galinhas , Animais , Embrião de Galinha , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Actinas/genética , Galinhas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Anticorpos , Nucleotídeos/metabolismo
10.
J Pediatr Gastroenterol Nutr ; 76(1): 25-32, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574001

RESUMO

OBJECTIVES: Physicians are prone to burnout which can negatively affect the quality of patient care and lead to medical errors. Burnout can also affect physicians by impacting their personal relationships, their sense of career fulfillment, and job satisfaction. The North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) formed a taskforce to investigate burnout among pediatric gastroenterologists. METHODS: A 35-item electronic survey was developed to collect demographic and practice information and characterize the well-being of pediatric gastroenterologists. Burnout was assessed employing 2 single-item measures adapted from the Maslach Burnout Inventory. The survey was distributed to NASPGHAN members 3 times from February 2020 to March 2020. Descriptive statistics, Chi-square, and Fisher exact tests were used. RESULTS: One thousand seven hundred ninety-one e-mails were successfully sent and 408 participants (22.7%) returned surveys. A total of 28.8% reported high risk for emotional exhaustion, 17.5% reported high risk for depersonalization, and 33% reported overall burnout. Participants 44 years of age or younger reported significantly more burnout than those 45 years and older ( P = 0.018). Contributors to high burnout identified included increased patient load/demands, insufficient nursing support, electronic health record (EHR) use, insufficient administrative staff, excessive on-call coverage, and more complex patients. Forty-four percent reported not having enough time for their personal life including family. A total of 16.2% of participants reported that they would not choose to be a pediatric gastroenterologist again. CONCLUSIONS: Pediatric gastroenterologists are at risk for emotional exhaustion, depersonalization, and overall burnout. Strategies to prevent physician burnout should be implemented as soon as feasibly possible to improve individual mental health and patient care.


Assuntos
Esgotamento Profissional , Gastroenterologia , Médicos , Criança , Humanos , Pessoa de Meia-Idade , Médicos/psicologia , Esgotamento Psicológico , Esgotamento Profissional/psicologia , Inquéritos e Questionários , Satisfação no Emprego
11.
Ann Rev Mar Sci ; 15: 277-302, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35773213

RESUMO

Constraining rates of marine carbonate burial through geologic time is critical for interpreting reconstructed changes in ocean chemistry and understanding feedbacks and interactions between Earth's carbon cycle and climate. The Quaternary Period (the past 2.6 million years) is of particular interest due to dramatic variations in sea level that periodically exposed and flooded areas of carbonate accumulation on the continental shelf, likely impacting the global carbonate budget and atmospheric carbon dioxide. These important effects remain poorly quantified. Here, we summarize the importance of carbonate burial in the ocean-climate system, review methods for quantifying carbonate burial across depositional environments, discuss advances in reconstructing Quaternary carbonate burial over the past three decades, and identify gaps and challenges in reconciling the existing records. Emerging paleoceanographic proxies such as the stable strontium and calcium isotope systems, as well as innovative modeling approaches, are highlighted as new opportunities to produce continuous records of global carbonate burial.


Assuntos
Carbonatos , Clima , Sedimentos Geológicos
12.
Parasit Vectors ; 15(1): 488, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572943

RESUMO

BACKGROUND: Widespread vector control has been essential in reducing the global incidence and prevalence of malaria, despite now stalled progress. Long-lasting insecticide-treated nets (LLINs) have historically been, and remain, one of the most commonly used vector control tools in the campaign against malaria. LLINs are effective only with proper use, adherence, retention and community adoption, which historically have relied on the successful control of secondary pests, including bed bugs. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities and failure to control infestations have been suggested to interfere with the effective use of LLINs. Therefore, the behavioral interactions of bed bugs with commonly used bed nets should be better understood. METHODS: To investigate the interactions between bed bugs (Cimex lectularius L.) and LLINs, insecticide-susceptible and pyrethroid-resistant bed bugs were challenged to pass through two commonly used LLINs in two behavioral assays, namely host (blood meal)-seeking and aggregation-seeking assays. The proportions blood-fed and aggregated bed bugs, aggregation time and mortality were quantified and analyzed in different bed bug life stages. RESULTS: Overall, both the insecticide-susceptible bed bugs and highly resistant bed bugs showed a varying ability to pass through LLINs based on treatment status and net design. Deltamethrin-treated nets significantly impeded both feeding and aggregation by the susceptible bed bugs. While none of the tested LLINs significantly impeded feeding (passage of unfed bed bugs through the nets) of the pyrethroid-resistant bed bugs, the untreated bed net, which has small mesh holes, impeded passage of fed bed bugs. Mortality was only seen in the susceptible bed bugs, with significantly higher mortality on deltamethrin-treated nets (63.5 ± 10.7%) than on permethrin-treated nets (2.0 ± 0.9%). CONCLUSIONS: Commonly used new LLINs failed to prevent the passage of susceptible and pyrethroid-resistant bed bugs in host- and aggregation-seeking bioassays. The overall low and variable mortality observed in susceptible bed bugs during both assays highlighted the potential of LLINs to impose strong selection pressure for the evolution of pyrethroid resistance. Already, the failure to control bed bug infestations has been implicated as a contributing factor to the abandonment or misuse of LLINs. For the first time to our knowledge, we have shown the potential of LLINs in selecting for resistant secondary pest populations and so their potential role in stalling malaria control programs should be further investigated. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities may interfere with the effective use of pyrethroid-impregnated bed nets. We assessed the interactions of two bed bug strains with commonly used bed nets using two behavioral assays, namely host (blood meal)-seeking by unfed bed bugs and aggregation-seeking by freshly fed bed bugs. These assays assessed the passage of bed bugs through various bed nets in response to host cues and aggregation stimuli, respectively. Conditioned paper is a section of file folder paper that has been exposed to bed bugs and has been impregnated with feces and aggregation pheromone; it is attractive to aggregation-seeking fed bed bugs. An unconditioned ramp is a similar section of file folder paper that allows bed bugs to traverse the bed net and gain access to a blood-meal source.


Assuntos
Anopheles , Percevejos-de-Cama , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Humanos , Inseticidas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos , Anopheles/fisiologia , Mosquitos Vetores , Piretrinas/farmacologia
13.
Sci Rep ; 12(1): 22258, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564500

RESUMO

Fully and accurately reconstructing changes in oceanic productivity and carbon export and their controls is critical to determining the efficiency of the biological pump and its role in the global carbon cycle through time, particularly in modern CO2 source regions like the eastern equatorial Pacific (EEP). Here we present new high-resolution records of sedimentary 230Th-normalized opal and nannofossil carbonate fluxes and [231Pa/230Th]xs ratios from site MV1014-02-17JC in the Panama Basin. We find that, across the last deglaciation, phytoplankton community structure is driven by changing patterns of nutrient (nitrate, iron, and silica) availability which, in turn, are caused by variability in the position of the Intertropical Convergence Zone (ITCZ) and associated changes in biogeochemical cycling and circulation in the Southern Ocean. Our multi-proxy work suggests greater scrutiny is required in the interpretation of common geochemical proxies of productivity and carbon export in the EEP.


Assuntos
Fitoplâncton , Água do Mar , Oceano Pacífico , Água do Mar/química , Carbono , Carbonatos
15.
Nat Commun ; 13(1): 5078, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038560

RESUMO

Many Gram-negative bacteria use CdiA effector proteins to inhibit the growth of neighboring competitors. CdiA transfers its toxic CdiA-CT region into the periplasm of target cells, where it is released through proteolytic cleavage. The N-terminal cytoplasm-entry domain of the CdiA-CT then mediates translocation across the inner membrane to deliver the C-terminal toxin domain into the cytosol. Here, we show that proteolysis not only liberates the CdiA-CT for delivery, but is also required to activate the entry domain for membrane translocation. Translocation function depends on precise cleavage after a conserved VENN peptide sequence, and the processed ∆VENN entry domain exhibits distinct biophysical and thermodynamic properties. By contrast, imprecisely processed CdiA-CT fragments do not undergo this transition and fail to translocate to the cytoplasm. These findings suggest that CdiA-CT processing induces a critical structural switch that converts the entry domain into a membrane-translocation competent conformation.


Assuntos
Proteínas de Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteólise
16.
Front Mol Biosci ; 9: 866854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558562

RESUMO

Bacteria live in complex communities and environments, competing for space and nutrients. Within their niche habitats, bacteria have developed various inter-bacterial mechanisms to compete and communicate. One such mechanism is contact-dependent growth inhibition (CDI). CDI is found in many Gram-negative bacteria, including several pathogens. These CDI+ bacteria encode a CdiB/CdiA two-partner secretion system that delivers inhibitory toxins into neighboring cells upon contact. Toxin translocation results in the growth inhibition of closely related strains and provides a competitive advantage to the CDI+ bacteria. CdiB, an outer-membrane protein, secretes CdiA onto the surface of the CDI+ bacteria. When CdiA interacts with specific target-cell receptors, CdiA delivers its C-terminal toxin region (CdiA-CT) into the target-cell. CdiA-CT toxin proteins display a diverse range of toxic functions, such as DNase, RNase, or pore-forming toxin activity. CDI+ bacteria also encode an immunity protein, CdiI, that specifically binds and neutralizes its cognate CdiA-CT, protecting the CDI+ bacteria from auto-inhibition. In Gram-negative bacteria, toxin/immunity (CdiA-CT/CdiI) pairs have highly variable sequences and functions, with over 130 predicted divergent toxin/immunity complex families. In this review, we will discuss biochemical and structural advances made in the characterization of CDI. This review will focus on the diverse array of CDI toxin/immunity complex structures together with their distinct toxin functions. Additionally, we will discuss the most recent studies on target-cell recognition and toxin entry, along with the discovery of a new member of the CDI loci. Finally, we will offer insights into how these diverse toxin/immunity complexes could be harnessed to fight human diseases.

17.
Limnol Oceanogr ; 67(12): 2779-2795, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501934

RESUMO

Coastal ecosystems are highly dynamic areas for carbon cycling and are likely to be negatively impacted by increasing ocean acidification. This research focused on dissolved inorganic carbon (DIC) and total alkalinity (TA) in the Mississippi Sound to understand the influence of local rivers on coastal acidification. This area receives large fluxes of freshwater from local rivers, in addition to episodic inputs from the Mississippi River through a human-built diversion, the Bonnet Carré Spillway. Sites in the Sound were sampled monthly from August 2018 to November 2019 and weekly from June to August 2019 in response to an extended spillway opening. Prior to the 2019 spillway opening, the contribution of the local, lower alkalinity rivers to the Sound may have left the study area more susceptible to coastal acidification during winter months, with aragonite saturation states (Ωar) < 2. After the spillway opened, despite a large increase in TA throughout the Sound, aragonite saturation states remained low, likely due to hypoxia and increased CO2 concentrations in subsurface waters. Increased Mississippi River input could represent a new normal in the Sound's hydrography during spring and summer months. The spillway has been utilized more frequently over the last two decades due to increasing precipitation in the Mississippi River watershed, which is primarily associated with climate change. Future increases in freshwater discharge and the associated declines in salinity, dissolved oxygen, and Ωar in the Sound will likely be detrimental to oyster stocks and the resilience of similar ecosystems to coastal acidification.

18.
Virulence ; 12(1): 2946-2956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793280

RESUMO

The struggle to control the COVID-19 pandemic is made challenging by the emergence of virulent SARS-CoV-2 variants. To gain insight into their replication dynamics, emergent Alpha (A), Beta (B) and Delta (D) SARS-CoV-2 variants were assessed for their infection performance in single variant- and co-infections. The effectiveness of thapsigargin (TG), a recently discovered broad-spectrum antiviral, against these variants was also examined. Of the 3 viruses, the D variant exhibited the highest replication rate and was most able to spread to in-contact cells; its replication rate at 24 h post-infection (hpi) based on progeny viral RNA production was over 4 times that of variant A and 9 times more than the B variant. In co-infections, the D variant boosted the replication of its co-infected partners at the expense of its own initial performance. Furthermore, co-infection with AD or AB combination conferred replication synergy where total progeny (RNA) output was greater than the sum of corresponding single-variant infections. All variants were highly sensitive to TG inhibition. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every combination (AB, AD, BD variants) of co-infection at greater than 95% (relative to controls) at 72 hpi. Likewise, TG was effective in inhibiting each variant in active preexisting infection. In conclusion, against the current backdrop of the dominant D variant that could be further complicated by co-infection synergy with new variants, the growing list of viruses susceptible to TG, a promising host-centric antiviral, now includes a spectrum of contemporary SARS-CoV-2 viruses.


Assuntos
Tratamento Farmacológico da COVID-19 , Coinfecção , SARS-CoV-2 , Tapsigargina , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos , Tapsigargina/farmacologia , Tapsigargina/uso terapêutico
19.
mBio ; 12(5): e0253021, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634941

RESUMO

Contact-dependent growth inhibition (CDI) systems enable the direct transfer of protein toxins between competing Gram-negative bacteria. CDI+ strains produce cell surface CdiA effector proteins that bind specific receptors on neighboring bacteria to initiate toxin delivery. Three classes of CdiA effectors that recognize different outer membrane protein receptors have been characterized in Escherichia coli to date. Here, we describe a fourth effector class that uses the lipopolysaccharide (LPS) core as a receptor to identify target bacteria. Selection for CDI-resistant target cells yielded waaF and waaP "deep-rough" mutants, which are unable to synthesize the full LPS core. The CDI resistance phenotypes of other waa mutants suggest that phosphorylated inner-core heptose residues form a critical CdiA recognition epitope. Class IV cdi loci also encode putative lysyl acyltransferases (CdiC) that are homologous to enzymes that lipidate repeats-in-toxin (RTX) cytolysins. We found that catalytically active CdiC is required for full target cell killing activity, and we provide evidence that the acyltransferase appends 3-hydroxydecanoate to a specific Lys residue within the CdiA receptor-binding domain. We propose that the lipid moiety inserts into the hydrophobic leaflet of lipid A to anchor CdiA interactions with the core oligosaccharide. Thus, LPS-binding CDI systems appear to have co-opted an RTX toxin-activating acyltransferase to increase the affinity of CdiA effectors for the target cell outer membrane. IMPORTANCE Contact-dependent growth inhibition (CDI) is a common form of interbacterial competition in which cells use CdiA effectors to deliver toxic proteins into their neighbors. CdiA recognizes target bacteria through specific receptor molecules on the cell surface. Here, we describe a new family of CdiA proteins that use lipopolysaccharide as a receptor to identify target bacteria. Target cell recognition is significantly enhanced by a unique fatty acid that is appended to the receptor-binding region of CdiA. We propose that the linked fatty acid inserts into the target cell outer membrane to stabilize the interaction. The CdiA receptor-binding region appears to mimic the biophysical properties of polymyxins, which are potent antibiotics used to disrupt the outer membranes of Gram-negative bacteria.


Assuntos
Inibição de Contato/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Inibição de Contato/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipídeos , Proteínas de Membrana/genética , Ligação Proteica
20.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...