Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651769

RESUMO

Bicontinuous microemulsions (BMEs), self-assembly systems consisting of oil and water nanodomains separated by surfactant monolayers, have many applications. However, changes in structure and properties of BMEs in the vertical direction can affect BMEs' utility. This study's objective was to determine the effect of equilibration time (τeq) on structural changes in the vertical direction for bicontinuous phases of Winsor-III (WIII) systems in situ or after being isolated, for D2O + H2O/1-dodecane/sodium dodecyl sulfate (SDS)/1-pentanol/NaCl at 22 °C. Small-angle neutron scattering (SANS) measurements were performed using a vertical stage sample environment that precisely aligned samples in the neutron beam. SANS data were fitted by the Teubner-Strey (TS) model and changes in TS-derived parameter values were observed. For 10 min ≤ τeq ≤ 4 h, the effective activity of the bicontinuous phase's surfactant monolayers increased with time at all vertical positions. At short equilibration (τeq = 10 min), small but significant amounts of water and oil were transiently emulsified near the WIII upper liquid-liquid interface. WIII systems underwent a relaxation process after being transferred to narrow 1 mm pathlength cells, resulting in a decrease of surfactant activity for the top half of the bicontinuous phase. For isolated bicontinuous phases, results suggest that SDS was desorbed from the BMEs by quartz near the bottom, while near the top, the water concentration near was relatively high. The results suggest that WIII systems should equilibrate for at least 4 hours after being prepared and transferred to a container that differs in cross sectional area and surfactant behavior in BMEs can change near interfaces.

2.
J Surfactants Deterg ; 26(3): 387-399, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37470058

RESUMO

The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.

3.
NanoImpact ; 31: 100474, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37419450

RESUMO

Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.

4.
Water Res ; 239: 120018, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201372

RESUMO

Plastic pollution caused by conventional plastics has promoted the development and use of biodegradable plastics. However, biodegradable plastics do not degrade readily in water; instead, they can generate micro- and nanoplastics. Compared to microplastics, nanoplastics are more likely to cause negative impacts to the aquatic environment due to their smaller size. The impacts of biodegradable nanoplastics highly depend on their aggregation behavior and colloidal stability, which still remain unknown. Here, we studied the aggregation kinetics of biodegradable nanoplastics made of polybutylene adipate co-terephthalate (PBAT) in NaCl and CaCl2 solutions as well as in natural waters before and after weathering. We further studied the effect of proteins on aggregation kinetics with both negative-charged bovine serum albumin (BSA) and positive-charged lysozyme (LSZ). For pristine PBAT nanoplastics (before weathering), Ca2+ destabilized nanoplastic suspensions more aggressively than Na+, with the critical coagulation concentration being 20 mM in CaCl2 vs 325 mM in NaCl. Both BSA and LSZ promoted the aggregation of pristine PBAT nanoplastics, and LSZ showed a more pronounced effect. However, no aggregation was observed for weathered PBAT nanoplastics under most experimental conditions. Further stability tests demonstrated that pristine PBAT nanoplastics aggregated substantially in seawater, but not in freshwater, and only slightly in soil pore water; while weathered PBAT nanoplastics remained stable in all natural waters. These results suggest that biodegradable nanoplastics, especially weathered biodegradable nanoplastics, are highly stable in the aquatic environment, even in the marine environment.


Assuntos
Plásticos Biodegradáveis , Plásticos , Microplásticos , Cloreto de Sódio , Cloreto de Cálcio , Soroalbumina Bovina , Água
5.
Foods ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359982

RESUMO

Four frying oils (rapeseed, soybean, rice bran, and palm oils) were employed either as received (fresh) or after preheating at 180 °C for 10 h, and measured for their fatty acid composition, viscosity, and dielectric constant. Batter-breaded fish nuggets (BBFNs) were fried at 180 °C (60 s), and the effect of the oils' quality on the oil penetration of fried BBFNs were investigated via the analysis of the absorption and the distribution of fat. Preheating increased the viscosity and dielectric constant of the oils. The total fat content using fresh oils was the greatest for palm oil (14.2%), followed by rice bran oil (12.2%), rapeseed oil (12.1%), and soybean oil (11.3%), a trend that was nearly consistent with the penetrated surface oil, except that the penetrated oil for soybean oil (6.8%) was higher than rapeseed oil (6.3%). The BBFNs which were fried using fresh oils possessed a more compact crust and smaller pores for the core and underwent a lower oil penetration compared to the preheated oils. The results suggested that the oils' quality significantly affected the oil penetration of fried BBFNs.

6.
J Vis Exp ; (185)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35969107

RESUMO

Microplastics (MPs) and nanoplastics (NPs) dispersed in agricultural ecosystems can pose a severe threat to biota in soil and nearby waterways. In addition, chemicals such as pesticides adsorbed by NPs can harm soil organisms and potentially enter the food chain. In this context, agriculturally utilized plastics such as plastic mulch films contribute significantly to plastic pollution in agricultural ecosystems. However, most fundamental studies of fate and ecotoxicity employ idealized and poorly representative MP materials, such as polystyrene microspheres. Therefore, as described herein, we developed a lab-scale multi-step procedure to mechanically form representative MPs and NPs for such studies. The plastic material was prepared from commercially available plastic mulch films of polybutyrate adipate-co-terephthalate (PBAT) that were embrittled through either cryogenic treatment (CRYO) or environmental weathering (W), and from untreated PBAT pellets. The plastic materials were then treated by mechanical milling to form MPs with a size of 46-840 µm, mimicking the abrasion of plastic fragments by wind and mechanical machinery. The MPs were then sieved into several size fractions to enable further analysis. Finally, the 106 µm sieve fraction was subjected to wet grinding to generate NPs of 20-900 nm, a process that mimics the slow size reduction process for terrestrial MPs. The dimensions and the shape for MPs were determined through image analysis of stereomicrographs, and dynamic light scattering (DLS) was employed to assess particle size for NPs. MPs and NPs formed through this process possessed irregular shapes, which is in line with the geometric properties of MPs recovered from agricultural fields. Overall, this size reduction method proved efficient for forming MPs and NPs composed of biodegradable plastics such as polybutylene adipate-co-terephthalate (PBAT), representing mulch materials used for agricultural specialty crop production.


Assuntos
Ecossistema , Microplásticos , Adipatos , Emprego , Plásticos , Solo
7.
ACS Appl Mater Interfaces ; 14(17): 20179-20189, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467833

RESUMO

We describe the structural studies of microemulsions (µEs) prepared from water, toluene, butanol, and polysorbate 20 (PS20) that we recently used as electrolytes. Small-angle neutron scattering was used to monitor the development of the bicontinuous system as a function of the water-to-surfactant mass ratio on a constant oil-to-surfactant dilution line, revealing how the domain size, correlation length, amphiphilicity factor, and bending moduli change with composition. Kratky and Porod analyses are also employed, providing further structural detail of the scattering domains. We demonstrate that controlling the water-to-surfactant ratio with a constant oil-to-surfactant dilution affects the bicontinuous phase, reveals a sizeable compositional region with structural similarities, and provides insight into the correlation of structure to physical properties. Voltammetric results are presented to examine how the evolution of the bicontinuous structure formed in a µE prepared from water, toluene, butanol, and PS20 contributes to the electrochemical response. These findings, therefore, provide essential information that will guide the formulation of µEs as electrolytes for energy storage.

8.
Environ Sci Technol ; 56(4): 2398-2406, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119274

RESUMO

Biodegradable plastics can reach full degradation when disposed of appropriately and thus alleviate plastic pollution caused by conventional plastics. However, additives can be released into the environment during degradation and the fate of these additives can be affected by the degradation process. Here, we characterized TiO2 particles released from a biodegradable plastic mulch during composting and studied the transport of the mulch-released TiO2 particles in inert sand and agricultural soil columns under unsaturated flow conditions. TiO2 particles (238 nm major axis and 154 nm minor axis) were released from the biodegradable plastic mulch in both single-particle and cluster forms. The mulch-released TiO2 particles were fully retained in unsaturated soil columns due to attachment onto the solid-water interface and straining. However, in unsaturated sand columns, the mulch-released TiO2 particles were highly mobile. A comparison with the pristine TiO2 revealed that the mobility of the mulch-released TiO2 particles was enhanced by humic acid present in the compost residues, which blocked attachment sites and imposed steric repulsion. This study demonstrates that TiO2 particles can be released during composting of biodegradable plastics and the transport potential of the plastic-released TiO2 particles in the terrestrial environment can be enhanced by compost residues.


Assuntos
Plásticos Biodegradáveis , Compostagem , Plásticos , Areia , Solo , Titânio
9.
Front Microbiol ; 11: 587074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281783

RESUMO

Agricultural plastic mulch films provide a favorable soil microclimate for plant growth, improving crop yields. Biodegradable plastic mulch films (BDMs) have emerged as a sustainable alternative to widely used non-biodegradable polyethylene (PE) films. BDMs are tilled into the soil after use and are expected to biodegrade under field conditions. However, little is known about the microbes involved in biodegradation and the relationships between microbes and plastics in soils. In order to capture the consortium of soil microbes associated with (and thus likely degrading) BDMs, agriculturally-weathered plastics from two locations were studied alongside laboratory enrichment experiments to assess differences in the microbial communities associated with BDMs and PE films. Using a combination of amplicon sequencing and quantitative PCR (qPCR), we observed that agriculturally-weathered plastics hosted an enrichment of fungi and an altered bacterial community composition compared to the surrounding soil. Notably, Methylobacterium, Arthrobacter, and Sphingomonas were enriched on BDMs compared to non-biodegradable PE. In laboratory enrichment cultures, microbial consortia were able to degrade the plastics, and the composition of the microbial communities was influenced by the composition of the BDMs. Our initial characterization of the microbial communities associated with biodegradable plastic mulch films, or the biodegradable "plastisphere," lays the groundwork for understanding biodegradation dynamics of biodegradable plastics in the environment.

10.
ACS Appl Mater Interfaces ; 12(36): 40213-40219, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805803

RESUMO

The use of flowing electrochemical reactors, for example, in redox flow batteries and in various electrosynthesis processes, is increasing. This technology has the potential to be of central significance in the increased deployment of renewable electricity for carbon-neutral processes. A key element of optimizing efficiency of electrochemical reactors is the combination of high solution conductivity and reagent solubility. Here, we show a substantial rate of charge transfer for an electrochemical reaction occurring in a microemulsion containing electroactive material is loaded inside the nonpolar (toluene) subphase of the microemulsion. The measured rate constant translates to an exchange current density comparable to that in redox flow batteries. The rate could be controlled by the surfactant, which maintains partitioning of reactants and products by forming an interfacial region with ions in the aqueous phase in close proximity. The hypothesized mechanism is evocative of membrane-bound enzymatic reactions. Achieving sufficient rates of electrochemical reaction is the product of an effort designed to establish a reaction condition that meets the requirements of electrochemical reactors using microemulsions to realize a separation of conducting and reactive elements of the solution, opening a door to the broad use of microemulsions to effect controlled electrochemical reactions as steps in more complex processes.

11.
PLoS One ; 15(7): e0235893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692771

RESUMO

Terrestrial nanoplastics (NPs) pose a serious threat to agricultural food production systems due to the potential harm of soil-born micro- and macroorganisms that promote soil fertility and ability of NPs to adsorb onto and penetrate into vegetables and other crops. Very little is known about the dispersion, fate and transport of NPs in soils. This is because of the challenges of analyzing terrestrial NPs by conventional microscopic techniques due to the low concentrations of NPs and absence of optical transparency in these systems. Herein, we investigate the potential utility of small-angle neutron scattering (SANS) and Ultra SANS (USANS) to probe the agglomeration behavior of NPs prepared from polybutyrate adipate terephthalate, a prominent biodegradable plastic used in agricultural mulching, in the presence of vermiculite, an artificial soil. SANS with the contrast matching technique was used to study the aggregation of NPs co-dispersed with vermiculite in aqueous media. We determined the contrast match point for vermiculite was 66% D2O / 33% H2O. At this condition, the signal for vermiculite was ~50-100%-fold lower that obtained using neat H2O or D2O as solvent. According to SANS and USANS, smaller-sized NPs (50 nm) remained dispersed in water and did not undergo size reduction or self-agglomeration, nor formed agglomerates with vermiculite. Larger-sized NPs (300-1000 nm) formed self-agglomerates and agglomerates with vermiculite, demonstrating their significant adhesion with soil. However, employment of convective transport (simulated by ex situ stirring of the slurries prior to SANS and USANS analyses) reduced the self-agglomeration, demonstrating weak NP-NP interactions. Convective transport also led to size reduction of the larger-sized NPs. Therefore, this study demonstrates the potential utility of SANS and USANS with contrast matching technique for investigating behavior of terrestrial NPs in complex soil systems.


Assuntos
Nanoestruturas/análise , Poliésteres/análise , Poluentes do Solo/análise , Solo/química , Nanoestruturas/química , Difração de Nêutrons , Poliésteres/química , Espalhamento a Baixo Ângulo , Poluentes do Solo/química
12.
Sci Total Environ ; 727: 138668, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32334227

RESUMO

The global use of agricultural plastic films, which provide multiple benefits for food production, is expected to grow by 59% from 2018 to 2026. Disposal options for agricultural plastics are limited and a major global concern, as plastic fragments from all sources ultimately accumulate in the sea. Biodegradable plastic mulches could potentially alleviate the disposal problem, but little is known about how well they degrade under different environmental conditions. We quantified the degradation of biodegradable plastic mulches in compost and in soil at warm and cool climates (Tennessee and Washington). Mulch degradation was assessed by Fourier-transformed infrared (FTIR) spectroscopy, molecular weight analysis, thermogravimetric analysis (TGA), nuclear-magnetic resonance (NMR), and mulch surface-area quantification. Biodegradable plastic mulches degraded faster in compost than in soil: degradation, as assessed by surface-area reduction, in compost ranged from 85 to 99% after 18 weeks, and in soil from 61 to 83% in Knoxville and 26 to 63% in Mount Vernon after 36 months. FTIR analyses indicate that hydrolytic degradation of ester bonds occurred, and a significant reduction of molecular weight was observed. TGA and NMR confirmed degradation of biodegradable polymers. Our results indicate that biodegradable plastic mulches degrade in soil, but at different rates in different climates and that degradation occurs over several years. Faster degradation occurred in compost, making composting a viable disposal method, especially in cool climates, where mulch fragments in soil may persist for many years.


Assuntos
Plásticos Biodegradáveis , Compostagem , Solo , Microbiologia do Solo , Tennessee , Washington
13.
Sci Total Environ ; 675: 686-693, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31039503

RESUMO

Plastic is ubiquitous in modern life, but most conventional plastic is non-biodegradable and accumulates as waste after use. Biodegradable plastic is a promising alternative to conventional plastic. However, biodegradable plastics must be thoroughly evaluated to ensure that they undergo complete degradation and have no adverse impact on the environment. We evaluated the degradation of biodegradable plastics during 18-week full-scale composting, and determined whether additives from the plastics are released upon degradation. Two biodegradable plastic films-one containing polybutylene co-adipate co-terephthalate (PBAT) and the other containing polylactic acid/poly-hydroxy-alkanoate (PLA/PHA)-were placed into meshbags and buried in the compost. Degradation was assessed by image analysis, scanning electron microscopy, Fourier-transformed infrared spectroscopy, electrophoretic mobility, δ13C isotope analyses, and single particle mass spectrometry of mulch fragments. The results showed >99% macroscopic degradation of PLA/PHA and 97% for PBAT film. Polymers in the biodegradable films degraded; however, micro- and nanoparticles, most likely carbon black, were observed on the meshbags. Overall, biodegradable plastics hold promise, but the release of micro- and nanoparticles from biodegradable plastic upon degradation warrants additional investigation and calls for longer field testing to ensure that either complete biodegradation occurs or that no long-term harm to the environment is caused.


Assuntos
Plásticos Biodegradáveis/análise , Biodegradação Ambiental , Compostagem , Nanopartículas/análise , Poliésteres
14.
Soft Matter ; 14(25): 5270-5276, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29892769

RESUMO

We demonstrate here for the first time via small-angle neutron scattering (SANS) that the middle, bicontinuous microemulsion (BµE) phase of Winsor-III systems undergoes a gradual change of structure and composition in the vertical direction, contrary to the commonly held belief of uniform structure and composition. A vertical stage was deployed to enable precise alignment of a custom-designed rectangular cell containing the WIII system with respect to the neutron beam, allowing for several different vertical positions to be analyzed. For the water/AOT/CK-2,13 (two-tailed alkyl ethoxylate containing a 1,3-dioxolane linkage)/heptane Winsor-III system, the quasi-periodic repeat distance (d) and correlation length (ξ), obtained from the Teubner-Strey model applied to the SANS data, decreased and the surface area per volume of the surfactant monolayer (via Porod analysis) increased in the downward direction, trends that reflect an increase of surfactant concentration, consistent with the ultralow interfacial tension that often occurs for the lower liquid-liquid interface of many WIII systems. The water/sodium dodecyl sulfate (SDS)/1-pentanol/dodecane system shared the same trend with regard to d as observed for AOT/CK-2,13. In contrast, for SDS/pentanol, ξ increased and the amphiphilicity factor (fa) decreased in the downward direction, trends consistent with a decrease of cosurfactant (pentanol) concentration in the downward direction. Non-uniformity in the vertical direction has implications in the transport of solutes between WIII phases during the extractive purification of proteins or the removal of heavy metals and pollutants from wastewater, or the deposition of BµEs onto hydrophilic vs. hydrophobic surfaces as thin coatings.

15.
Sci Total Environ ; 635: 1600-1608, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678255

RESUMO

Polyethylene mulch films used in agriculture are a major source of plastic pollution in soils. Biodegradable plastics have been introduced as alternative to commonly-used polyethylene. Here we studied the interaction of earthworms (Lumbricus terrestris) with polyethylene and biodegradable plastic mulches. The objective was to assess whether earthworms would select between different types of mulches when foraging for food, and whether they drag macroscopic plastic mulch into the soil. Laboratory experiments were carried out with earthworms in Petri dishes and mesocosms. The treatments were standard polyethylene mulch, four biodegradable plastic mulches (PLA/PHA [polylactic acid/polyhydroxy alkanoate], Organix, BioAgri, Naturecycle), a biodegradable paper mulch (WeedGuardPlus), and poplar litter, which served as control. Four and three replicates for the Petri dish and mesocosm experiments were used, respectively. Macroscopic plastic and paper mulch pieces (1.5 cm × 1.5 cm and 2 cm × 2 cm) were collected from an agricultural field after a growing season, after being buried in the soil for 6 and 12 months, and after being composted for 2 weeks. We found that earthworms did not ingest polyethylene. Field-weathered biodegradable plastic mulches were not ingested either, however, after soil burial and composting, some biodegradable plastics were eaten and could not be recovered from soil any longer. Earthworms, when foraging for food, dragged plastic mulch, including polyethylene and biodegradable plastic, and poplar leaves into their burrows. The burial of macroscopic plastic mulch underground led to a redistribution of plastics in the soil profile, and likely enhances the degradation of biodegradable mulches in soil, but also can lead to leaching of plastic fragments by macropore flow.


Assuntos
Plásticos Biodegradáveis , Oligoquetos/fisiologia , Polietileno/metabolismo , Poluentes do Solo/metabolismo , Animais , Solo
16.
Biochim Biophys Acta Biomembr ; 1860(2): 624-632, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29138064

RESUMO

Antimicrobial peptides effectively kill antibiotic-resistant bacteria by forming pores in prokaryotes' biomembranes via penetration into the biomembranes' interior. Bicontinuous microemulsions, consisting of interdispersed oil and water nanodomains separated by flexible surfactant monolayers, are potentially valuable for hosting membrane-associated peptides and proteins due to their thermodynamic stability, optical transparency, low viscosity, and high interfacial area. Here, we show that bicontinuous microemulsions formed by negatively-charged surfactants are a robust biomembrane mimetic system for the antimicrobial peptide melittin. When encapsulated in bicontinuous microemulsions formed using three-phase (Winsor-III) systems, melittin's helicity increases greatly due to penetration into the surfactant monolayers, mimicking its behavior in biomembranes. But, the threshold melittin concentration required to achieve these trends is lower for the microemulsions. The extent of penetration was decreased when the interfacial fluidity of the microemulsions was increased. These results suggest the utility of bicontinuous microemulsions for isolation, purification, delivery, and host systems for antimicrobial peptides.


Assuntos
Membrana Celular/química , Emulsões/química , Meliteno/química , Tensoativos/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas/metabolismo , Biomimética , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Meliteno/farmacologia , Difração de Nêutrons , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Termodinâmica , Água/química
17.
Colloids Surf B Biointerfaces ; 160: 144-153, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922633

RESUMO

Bicontinuous microemulsions (BµEs), consisting of water and oil nanodomains separated by surfactant monolayers of near-zero curvature, are potentially valuable systems for purification and delivery of biomolecules, for hosting multiphasic biochemical reactions, and as templating media for preparing nanomaterials. We formed Winsor-III systems by mixing aqueous protein and sodium dodecyl sulfate (SDS) solutions with dodecane and 1-pentanol (cosurfactant) to efficiently extract proteins into the middle (BµE) phase. Bovine serum albumin (BSA) and cytochrome c partitioned to the BµE phase at 64% and 81% efficiency, respectively, producing highly concentrated protein solutions (32 and 44gL-1, respectively), through release of water and oil from the BµEs. Circular dichroism spectroscopic analysis demonstrated that BSA underwent minor secondary structural changes upon incorporation into BµEs, while the secondary structure of cytochrome c and pepsin underwent major changes. Small-angle x-ray scattering (SAXS) results show that proteins promoted an increase of the interfacial fluidity and surface area per volume for the BµE surfactant monolayers, and that each protein uniquely altered self-assembly in the Winsor-III systems. Cytochrome c partitioned via electrostatic attractions between SDS and the protein's positively-charged groups, residing near the surfactant head groups of BµE monolayers, where it decreased surfactant packing efficiency. BSA partitioned through formation of SDS-BSA complexes via hydrophobic and electrostatic attractive interactions. As the BSA-SDS ratio increased, complexes' partitioning favored BµEs over the oil excess phase due to the increased hydrophilicity of the complexes. This study demonstrates the potential utility of BµEs to purify proteins and prepare nanostructured fluids possessing high protein concentration.


Assuntos
Alcanos/química , Emulsões/química , Pentanóis/química , Soroalbumina Bovina/química , Dodecilsulfato de Sódio/química , Água/química , Algoritmos , Animais , Bovinos , Modelos Químicos , Nanoestruturas/química , Conformação Proteica , Soroalbumina Bovina/isolamento & purificação
18.
Soft Matter ; 13(28): 4871-4880, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28631792

RESUMO

Bicontinous microemulsions (BµE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. Here we present the first time report of nanoscopic dynamics of surfactant monolayers within BµEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BµEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates that surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants' hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BµEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BµE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. This study demonstrates the utility of QENS for evaluating dynamics of BµEs in nanoscopic region, and that proteins directly affect the microscopic dynamics, which is of relevance for evaluating release kinetics of encapsulated drugs from BµE delivery systems and the use of BµEs as biomembrane mimetic systems for investigating membrane protein-biomembrane interactions.


Assuntos
Proteínas de Membrana/química , Nanoestruturas/química , Citocromos c/metabolismo , Emulsões , Proteínas de Membrana/metabolismo , Tensoativos/química
19.
Langmuir ; 31(14): 4224-31, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790280

RESUMO

Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments.


Assuntos
Ar , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Capacitância Elétrica , Impedância Elétrica , Membranas Artificiais , Nanoestruturas/química , Óleos/química , Pressão Osmótica , Propriedades de Superfície , Temperatura de Transição , Volatilização
20.
Langmuir ; 31(6): 1901-10, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25603188

RESUMO

Small-angle neutron scattering (SANS) analysis using the Teubner-Strey model has been employed to evaluate the effect of protein incorporation into the middle, bicontinuous microemulsion (BµE) phase of Winsor-III (WIII) systems formed by an aerosol-OT (AOT)/alkyl ethoxylate mixed surfactant system to understand better the extraction of proteins into and out of BµEs and to study the effect of proteins on a system that serves as a biomimetic analog of cell membranes. Under conditions of high salinity, the incorporation of positively charged proteins cytochrome c, lysozyme, and α-chymotrypsin, near their solubilization limit in the BµEs promoted the release of water and oil from the BµEs, a decrease in the quasi-periodic repeat distance (d), an increase in ordering (a decrease in the amphiphilicity factor, fa) for the surfactant monolayers, and a decrease in the surface area per surfactant headgroup, suggesting that the proteins affected the self-assembly of components in the BµE phase and produced Debye shielding of AOT's sulfonate headgroup. For WIII systems possessing lower salinity, cytochrome c reduced the efficiency of surfactant in the BµE phase, noted by increases in d and fa, suggesting that the enzyme and AOT underwent ion pairing. The results of this study demonstrate the importance of ionic strength to modulate protein-surfactant interactions, which in turn will control the release of proteins encapsulated in the BµEs, relevant to WIII-based protein extraction and controlled release from BµE delivery systems, and demonstrate the utility of BµEs as a model system to understand the effect of proteins on biomembranes.


Assuntos
Nanoestruturas/química , Difração de Nêutrons , Proteínas/química , Espalhamento a Baixo Ângulo , Aerossóis , Animais , Bovinos , Emulsões , Heptanos/química , Óleos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...