Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Transl Res ; 270: 24-41, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38556110

RESUMO

Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.

2.
Front Aging Neurosci ; 15: 1306004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155736

RESUMO

Introduction: Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. Methods: hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. Results: hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1,061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. Discussion: hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.

3.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961246

RESUMO

INTRODUCTION: Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. METHODS: hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. RESULTS: hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. DISCUSSION: hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.

4.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961679

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and leading cause of dementia, characterized by neuronal and synapse loss, amyloid-ß and tau protein aggregates, and a multifactorial pathology involving neuroinflammation, vascular dysfunction, and disrupted metabolism. Additionally, there is growing evidence of imbalance between neuronal excitation and inhibition in the AD brain secondary to dysfunction of parvalbumin (PV)- and somatostatin (SST)-positive interneurons, which differentially modulate neuronal activity. Importantly, impaired interneuron activity in AD may occur upstream of amyloid-ß pathology rendering it a potential therapeutic target. To determine the underlying pathologic processes involved in interneuron dysfunction, we spatially profiled the brain transcriptome of the 5XFAD AD mouse model versus controls, across four brain regions, dentate gyrus, hippocampal CA1 and CA3, and cortex, at early-stage (12 weeks-of-age) and late-stage (30 weeks-of-age) disease. Global comparison of differentially expressed genes (DEGs) followed by enrichment analysis of 5XFAD versus control highlighted various biological pathways related to RNA and protein processing, transport, and clearance in early-stage disease and neurodegeneration pathways at late-stage disease. Early-stage DEGs examination found shared, e.g ., RNA and protein biology, and distinct, e.g ., N-glycan biosynthesis, pathways enriched in PV-versus somatostatin SST-positive interneurons and in excitatory neurons, which expressed neurodegenerative and axon- and synapse-related pathways. At late-stage disease, PV-positive interneurons featured cancer and cancer signaling pathways along with neuronal and synapse pathways, whereas SST-positive interneurons showcased glycan biosynthesis and various infection pathways. Late-state excitatory neurons were primarily characterized by neurodegenerative pathways. These fine-grained transcriptomic profiles for PV- and SST-positive interneurons in a time- and spatial-dependent manner offer new insight into potential AD pathophysiology and therapeutic targets.

5.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791586

RESUMO

Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background. Glomeruli and sciatic nerve transcriptomic data from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both complications in T1D and T2D mice. Gene-level analysis identified a high degree of concordance in shared differentially expressed genes (DEGs) in both complications and across diabetes type when using mice from the same cohort and genetic background. As we have previously shown a low concordance of shared DEGs in DPN when using mice from different cohorts and genetic backgrounds, this suggests that genetic background may influence diabetic complications. Collectively, these findings support the role of inflammation and indicate that genetic background is important in complications of both T1D and T2D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Neuropatias Diabéticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Transcriptoma/genética , Neuropatias Diabéticas/complicações , Perfilação da Expressão Gênica , Inflamação/complicações
6.
J Extracell Vesicles ; 12(11): e12340, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37898562

RESUMO

The metabolic syndrome (MetS) and Alzheimer's disease share several pathological features, including insulin resistance, abnormal protein processing, mitochondrial dysfunction and elevated inflammation and oxidative stress. The MetS constitutes elevated fasting glucose, obesity, dyslipidaemia and hypertension and increases the risk of developing Alzheimer's disease, but the precise mechanism remains elusive. Insulin resistance, which develops from a diet rich in sugars and saturated fatty acids, such as palmitate, is shared by the MetS and Alzheimer's disease. Extracellular vesicles (EVs) are also a point of convergence, with altered dynamics in both the MetS and Alzheimer's disease. However, the role of palmitate- and glucose-induced insulin resistance in the brain and its potential link through EVs to Alzheimer's disease is unknown. We demonstrate that palmitate and high glucose induce insulin resistance and amyloid precursor protein phosphorylation in primary rat embryonic cortical neurons and human cortical stem cells. Palmitate also triggers insulin resistance in oligodendrocytes, the supportive glia of the brain. Palmitate and glucose enhance amyloid precursor protein secretion from cortical neurons via EVs, which induce tau phosphorylation when added to naïve neurons. Additionally, EVs from palmitate-treated oligodendrocytes enhance insulin resistance in recipient neurons. Overall, our findings suggest a novel theory underlying the increased risk of Alzheimer's disease in MetS mediated by EVs, which spread Alzheimer's pathology and insulin resistance.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Resistência à Insulina , Síndrome Metabólica , Ratos , Humanos , Animais , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Síndrome Metabólica/complicações , Glucose , Palmitatos , Vesículas Extracelulares/metabolismo
7.
FASEB J ; 37(8): e23115, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490006

RESUMO

Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Camundongos , Qualidade de Vida , Restrição Calórica , Jejum , Camundongos Endogâmicos
8.
J Neurochem ; 166(2): 367-388, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328915

RESUMO

Schwann cells (SCs) support peripheral nerves under homeostatic conditions, independent of myelination, and contribute to damage in prediabetic peripheral neuropathy (PN). Here, we used single-cell RNA sequencing to characterize the transcriptional profiles and intercellular communication of SCs in the nerve microenvironment using the high-fat diet-fed mouse, which mimics human prediabetes and neuropathy. We identified four major SC clusters, myelinating, nonmyelinating, immature, and repair in healthy and neuropathic nerves, in addition to a distinct cluster of nerve macrophages. Myelinating SCs acquired a unique transcriptional profile, beyond myelination, in response to metabolic stress. Mapping SC intercellular communication identified a shift in communication, centered on immune response and trophic support pathways, which primarily impacted nonmyelinating SCs. Validation analyses revealed that neuropathic SCs become pro-inflammatory and insulin resistant under prediabetic conditions. Overall, our study offers a unique resource for interrogating SC function, communication, and signaling in nerve pathophysiology to help inform SC-specific therapies.


Assuntos
Doenças do Sistema Nervoso Periférico , Estado Pré-Diabético , Camundongos , Humanos , Animais , Bainha de Mielina/metabolismo , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Análise da Expressão Gênica de Célula Única , Células de Schwann/metabolismo , Nervos Periféricos , Doenças do Sistema Nervoso Periférico/metabolismo
9.
Eur J Neurol ; 30(8): 2442-2452, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154411

RESUMO

BACKGROUND AND OBJECTIVES: Hereditary spastic paraplegias (HSPs) are heterogenous genetic disorders. While peripheral nerve involvement is frequent in spastic paraplegia 7 (SPG7), the evidence of peripheral nerve involvement in SPG4 is more controversial. We aimed to characterize lower extremity peripheral nerve involvement in SPG4 and SPG7 by quantitative magnetic resonance neurography (MRN). METHODS: Twenty-six HSP patients carrying either the SPG4 or SPG7 mutation and 26 age-/sex-matched healthy controls prospectively underwent high-resolution MRN with large coverage of the sciatic and tibial nerve. Dual-echo turbo-spin-echo sequences with spectral fat-saturation were utilized for T2-relaxometry and morphometric quantification, while two gradient-echo sequences with and without an off-resonance saturation rapid frequency pulse were applied for magnetization transfer contrast (MTC) imaging. HSP patients additionally underwent detailed neurologic and electroneurographic assessments. RESULTS: All microstructural (proton spin density [ρ], T2-relaxation time, magnetization transfer ratio) and morphometric (cross-sectional area) quantitative MRN markers were decreased in SPG4 and SPG7 indicating chronic axonopathy. ρ was superior in differentiating subgroups and identifying subclinical nerve damage in SPG4 and SPG7 without neurophysiologic signs of polyneuropathy. MRN markers correlated well with clinical scores and electroneurographic results. CONCLUSIONS: MRN characterizes peripheral nerve involvement in SPG4 and SPG7 as a neuropathy with predominant axonal loss. Evidence of peripheral nerve involvement in SPG4 and SPG7, even without electroneurographically manifest polyneuropathy, and the good correlation of MRN markers with clinical measures of disease progression, challenge the traditional view of the existence of HSPs with isolated pyramidal signs and suggest MRN markers as potential progression biomarkers in HSP.


Assuntos
Doenças do Sistema Nervoso Periférico , Polineuropatias , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/patologia , Polineuropatias/patologia , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
10.
Front Cell Neurosci ; 17: 1167688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206668

RESUMO

Introduction: The prevalence of obesity, prediabetes, and diabetes continues to grow worldwide. These metabolic dysfunctions predispose individuals to neurodegenerative diseases and cognitive impairment, including dementias such as Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The innate inflammatory cGAS/STING pathway plays a pivotal role in metabolic dysfunction and is an emerging target of interest in multiple neurodegenerative diseases, including AD/ADRD. Therefore, our goal was to establish a murine model to specifically target the cGAS/STING pathway to study obesity- and prediabetes-induced cognitive impairment. Methods: We performed two pilot studies in cGAS knockout (cGAS-/-) male and female mice designed to characterize basic metabolic and inflammatory phenotypes and examine the impact of high-fat diet (HFD) on metabolic, inflammatory, and cognitive parameters. Results: cGAS-/- mice displayed normal metabolic profiles and retained the ability to respond to inflammatory stimuli, as indicated by an increase in plasma inflammatory cytokine production in response to lipopolysaccharide injection. HFD feeding caused expected increases in body weight and decreases in glucose tolerance, although onset was accelerated in females versus males. While HFD did not increase plasma or hippocampal inflammatory cytokine production, it did alter microglial morphology to a state indicative of activation, particularly in female cGAS-/- mice. However, HFD negatively impacted cognitive outcomes in male, but not female animals. Discussion: Collectively, these results suggest that cGAS-/- mice display sexually dimorphic responses to HFD, possibly based on differences in microglial morphology and cognition.

11.
iScience ; 26(3): 106164, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915697

RESUMO

Obesity is a growing global concern in adults and youth with a parallel rise in associated complications, including cognitive impairment. Obesity induces brain inflammation and activates microglia, which contribute to cognitive impairment by aberrantly phagocytosing synaptic spines. Local and systemic signals, such as inflammatory cytokines and metabolites likely participate in obesity-induced microglial activation. However, the precise mechanisms mediating microglial activation during obesity remain incompletely understood. Herein, we leveraged our mouse model of high-fat diet (HFD)-induced obesity, which mirrors human obesity, and develops hippocampal-dependent cognitive impairment. We assessed hippocampal microglial activation by morphological and single-cell transcriptomic analysis to evaluate this heterogeneous, functionally diverse, and dynamic class of cells over time after 1 and 3 months of HFD. HFD altered cell-to-cell communication, particularly immune modulation and cellular adhesion signaling, and induced a differential gene expression signature of protein processing in the endoplasmic reticulum in a time-dependent manner.

12.
Clin Neuroradiol ; 33(2): 383-392, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36264352

RESUMO

PURPOSE: Recent studies suggest an involvement of the peripheral nervous system (PNS) in multiple sclerosis (MS). Here, we characterize the proximal-to-distal distribution pattern of peripheral nerve lesions in relapsing-remitting MS (RRMS) by quantitative magnetic resonance neurography (MRN). METHODS: A total of 35 patients with RRMS were prospectively included and underwent detailed neurologic and electrophysiologic examinations. Additionally, 30 age- and sex-matched healthy controls were recruited. 3T MRN with anatomical coverage from the proximal thigh down to the tibiotalar joint was conducted using dual-echo 2­dimensional relaxometry sequences with spectral fat saturation. Quantification of PNS involvement was performed by evaluating microstructural (proton spin density (ρ), T2-relaxation time (T2app)), and morphometric (cross-sectional area, CSA) MRN markers in every axial slice. RESULTS: In patients with RRMS, tibial nerve lesions at the thigh and the lower leg were characterized by a decrease in T2app and an increase in ρ compared to controls (T2app thigh: p < 0.0001, T2app lower leg: p = 0.0040; ρ thigh: p < 0.0001; ρ lower leg: p = 0.0098). An additional increase in nerve CSA was only detectable at the thigh, while the semi-quantitative marker T2w-signal was not altered in RRMS in both locations. A slight proximal-to-distal gradient was observed for T2app and T2-signal, but not for ρ. CONCLUSION: PNS involvement in RRMS is characterized by a decrease in T2app and an increase in ρ, occurring with proximal predominance at the thigh and the lower leg. Our results indicate microstructural alterations in the extracellular matrix of peripheral nerves in RRMS and may contribute to a better understanding of the pathophysiologic relevance of PNS involvement.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla/patologia , Nervo Tibial/diagnóstico por imagem , Nervos Periféricos
13.
Front Immunol ; 13: 1012594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248795

RESUMO

Obesity, prediabetes, and diabetes are growing in prevalence worldwide. These metabolic disorders are associated with neurodegenerative diseases, particularly Alzheimer's disease and Alzheimer's disease related dementias. Innate inflammatory signaling plays a critical role in this association, potentially via the early activation of the cGAS/STING pathway. To determine acute systemic metabolic and inflammatory responses and corresponding changes in the brain, we used a high fat diet fed obese mouse model of prediabetes and cognitive impairment. We observed acute systemic changes in metabolic and inflammatory responses, with impaired glucose tolerance, insulin resistance, and alterations in peripheral immune cell populations. Central inflammatory changes included microglial activation in a pro-inflammatory environment with cGAS/STING activation. Blocking gap junctions in neuron-microglial co-cultures significantly decreased cGAS/STING activation. Collectively these studies suggest a role for early activation of the innate immune system both peripherally and centrally with potential inflammatory crosstalk between neurons and glia.


Assuntos
Doença de Alzheimer , Encefalite , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Estado Pré-Diabético , Ração Animal , Animais , Dieta Hiperlipídica , Camundongos , Obesidade/metabolismo
14.
Clin Transl Med ; 12(9): e1046, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36101963

RESUMO

BACKGROUND: As the field of stem cell therapy advances, it is important to develop reliable methods to overcome host immune responses in animal models. This ensures survival of transplanted human stem cell grafts and enables predictive efficacy testing. Immunosuppressive drugs derived from clinical protocols are frequently used but are often inconsistent and associated with toxic side effects. Here, using a molecular imaging approach, we show that immunosuppression targeting costimulatory molecules CD4 and CD40L enables robust survival of human xenografts in mouse brain, as compared to conventional tacrolimus and mycophenolate mofetil. METHODS: Human neural stem cells were modified to express green fluorescent protein and firefly luciferase. Cells were implanted in the fimbria fornix of the hippocampus and viability assessed by non-invasive bioluminescent imaging. Cell survival was assessed using traditional pharmacologic immunosuppression as compared to monoclonal antibodies directed against CD4 and CD40L. This paradigm was also implemented in a transgenic Alzheimer's disease mouse model. RESULTS: Graft rejection occurs within 7 days in non-immunosuppressed mice and within 14 days in mice on a traditional regimen. The addition of dual monoclonal antibody immunosuppression extends graft survival past 7 weeks (p < .001) on initial studies. We confirm dual monoclonal antibody treatment is superior to either antibody alone (p < .001). Finally, we demonstrate robust xenograft survival at multiple cell doses up to 6 months in both C57BL/6J mice and a transgenic Alzheimer's disease model (p < .001). The dual monoclonal antibody protocol demonstrated no significant adverse effects, as determined by complete blood counts and toxicity screen. CONCLUSIONS: This study demonstrates an effective immunosuppression protocol for preclinical testing of stem cell therapies. A transition towards antibody-based strategies may be advantageous by enabling stem cell survival in preclinical studies that could inform future clinical trials.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Encéfalo , Ligante de CD40 , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos C57BL
15.
Front Physiol ; 13: 921942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072849

RESUMO

As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.

16.
Eur J Neurol ; 29(6): 1782-1790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35224825

RESUMO

BACKGROUND AND PURPOSE: Knowledge about the exact underlying pathophysiological changes involved in the genesis and progression of spinocerebellar ataxia type 3 (SCA3) is limited. Lower extremity peripheral nerve lesions in clinically, genetically and electrophysiologically classified ataxic and pre-ataxic SCA3 mutation carriers were characterized and quantified by magnetic resonance neurography (MRN). METHODS: Eighteen SCA3 mutation carriers and 20 age-/sex-matched healthy controls were prospectively enrolled. All SCA3 mutation carriers underwent detailed neurological and electrophysiological examinations. 3 T MRN covered the lumbosacral plexus and proximal thigh to the tibiotalar joint by using T2-weighted inversion recovery sequences, dual-echo relaxometry sequences with spectral fat saturation, and two gradient-echo sequences with and without an off-resonance saturation rapid frequency pulse. Detailed quantification of nerve lesions by morphometric and microstructural MRN markers, including T2 relaxometry and magnetization transfer contrast imaging, was conducted in all study participants. RESULTS: MRN detected peripheral nerve damage in ataxic and pre-ataxic SCA3. The quantitative markers proton spin density (ρ), T2 relaxation time, magnetization transfer ratio and cross-sectional area were decreased in SCA3, indicating chronic axonopathy. MTR and ρ identified early, subclinical nerve damage in pre-ataxic SCA3 and in SCA3 mutation carriers without polyneuropathy and were superior in differentiating between all subgroups. Additionally, microstructural markers correlated well with clinical symptom scores and electrophysiological results. CONCLUSIONS: Our data provide a comprehensive characterization of peripheral nerve damage in SCA3 and assist in understanding the mechanisms of the multisystemic disease evolution. Evidence of peripheral nerve involvement prior to the onset of clinically overt ataxia might have important implications for designing early intervention studies.


Assuntos
Doença de Machado-Joseph , Doenças do Sistema Nervoso Periférico , Ataxia , Humanos , Doença de Machado-Joseph/diagnóstico por imagem , Doença de Machado-Joseph/genética , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia
17.
Eur J Neurol ; 29(2): 573-582, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34564924

RESUMO

BACKGROUND: We characterized and quantified peripheral nerve damage in alcohol-dependent patients (ADP) by magnetic resonance neurography (MRN) in correlation with clinical and electrophysiologic findings. METHODS: Thirty-one adult patients with a history of excessive alcohol consumption and age-/sex-matched healthy controls were prospectively examined. After detailed neurologic and electrophysiologic testing, the patient group was subdivided into ADP with alcohol-related polyneuropathy (ALN) and without ALN (Non-ALN). 3T MRN with anatomical coverage from the proximal thigh down to the tibiotalar joint was performed using dual-echo 2-dimensional relaxometry sequences with spectral fat saturation. Detailed quantification of nerve injury by morphometric (cross-sectional area [CSA]) and microstructural MRN markers (proton spin density [ρ], apparent T2-relaxation-time [T2app ]) was conducted in all study participants. RESULTS: MRN detected nerve damage in ADP with and without ALN. A proximal-to-distal gradient was identified for nerve T2-weighted (T2w)-signal and T2app in ADP, indicating a proximal predominance of nerve lesions. While all MRN markers differentiated significantly between ADP and controls, microstructural markers were able to additionally differentiate between subgroups: tibial nerve ρ at thigh level was increased in ALN (p < 0.0001) and in Non-ALN (p = 0.0052) versus controls, and T2app was higher in ALN versus controls (p < 0.0001) and also in ALN versus Non-ALN (p = 0.0214). T2w-signal and CSA were only higher in ALN versus controls. CONCLUSIONS: MRN detects and quantifies peripheral nerve damage in ADP in vivo even in the absence of clinically overt ALN. Microstructural markers (T2app , ρ) are most suitable for differentiating between ADP with and without manifest ALN, and may help to elucidate the underlying pathomechanism in ALN.


Assuntos
Neuropatia Alcoólica , Doenças do Sistema Nervoso Periférico , Adulto , Neuropatia Alcoólica/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Doenças do Sistema Nervoso Periférico/patologia , Nervo Tibial
18.
Invest Radiol ; 57(5): 301-307, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839307

RESUMO

OBJECTIVES: Multi spin echo (MSE) sequences are often used for obtaining T2-relaxometry data as they provide defined echo times (TEs). Due to their time-consuming acquisition, they are frequently replaced by turbo spin echo (TSE) sequences that in turn bear the risk of systematic errors when analyzing small structures or lesions. With this study, we aim to test whether T2-relaxometry data derived from either dual-echo TSE or 12-echo MSE sequences are equivalent for quantifying peripheral nerve lesions. Hereditary transthyretin (ATTRv) amyloidosis was chosen as a surrogate disease, as it allows the inclusion of both asymptomatic carriers of the underlying variant transthyretin gene (varTTR) and symptomatic ATTRv amyloidosis patients. MATERIALS AND METHODS: Overall, 50 participants with genetically confirmed varTTR (20 clinically symptomatic ATTRv amyloidosis; 4 females, 16 males; mean age, 61.8 years; range, 33-76 years; and 30 asymptomatic varTTR-carriers; 18 females, 12 males; mean age, 43.1 years; range, 21-62 years), and 30 healthy volunteers (13 females, 17 males, mean age 41.3 years, range 22-73) were prospectively included and underwent magnetic resonance neurography at 3 T. T2-relaxometry was performed by acquiring an axial 2-dimensional dual-echo TSE sequence with spectral fat saturation (TE1/TE2, 12/73 milliseconds; TR, 5210 milliseconds; acquisition time, 7 minutes, 30 seconds), and an axial 2-dimensional MSE sequence with spectral fat saturation and with 12 different TE (TE1, 10 milliseconds to TE12, 120 milliseconds; ΔTE, 10 milliseconds; TR, 3000 milliseconds; acquisition time, 11 minutes, 23 seconds) at the right mid to lower thigh. Sciatic nerve regions of interest were manually drawn in ImageJ on 10 central slices per participant and sequence, and the apparent T2-relaxation time (T2app) and proton spin density (ρ) were calculated individually from TSE and MSE relaxometry data. RESULTS: Linear regression showed that T2app values obtained from the dual-echo TSE (T2appTSE), and those calculated from the 12-echo MSE (T2appMSE) were mathematically connected by a factor of 1.3 throughout all groups (controls: 1.26 ± 0.02; varTTR-carriers: 1.25 ± 0.02; symptomatic ATTRv amyloidosis: 1.28 ± 0.02), whereas a factor of 0.5 was identified between respective ρ values (controls: 0.47 ± 0.01; varTTR-carriers: 0.47 ± 0.01; symptomatic ATTRv amyloidosis: 0.50 ± 0.02). T2app calculated from both TSE and MSE, distinguished between symptomatic ATTRv (T2appTSE 66.38 ± 2.6; T2appMSE 84.6 ± 3.3) and controls (T2appTSE 58.1 ± 1.0, P = 0.0028; T2appMSE 72.8 ± 0.7, P < 0.0001), whereas differences between varTTR-carriers (T2appTSE 61.8 ± 1.5; T2appMSE 76.7 ± 1.3) and ATTRv amyloidosis were observed only for T2appMSE (P = 0.0082). The ρ value differentiated well between healthy controls (ρTSE 365.1 ± 7.2; ρMSE 170.4 ± 3.8) versus varTTR-carriers (ρTSE 415.7 ± 9.8, P = 0.0027; ρMSE 193.7 ± 5.3, P = 0.0398) and versus symptomatic ATTRv amyloidosis (ρTSE 487.8 ± 17.9; ρMSE 244.7 ± 13.1, P < 0.0001, respectively), but also between varTTR-carriers and ATTRv amyloidosis (ρTSEP = 0.0001; ρMSEP < 0.0001). CONCLUSIONS: Dual-echo TSE and 12-echo MSE sequences provide equally robust and reliable T2-relaxometry data when calculating T2app and ρ. Due to their shorter acquisition time and higher resolution, TSE sequences may be preferred in future magnetic resonance imaging protocols. As a secondary result, ρ can be confirmed as a sensitive biomarker to detect early nerve lesions as it differentiated best among healthy controls, asymptomatic varTTR-carriers, and symptomatic ATTRv amyloidosis, whereas T2app might be beneficial in already manifest ATTRv amyloidosis.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Adulto , Idoso , Neuropatias Amiloides Familiares/diagnóstico por imagem , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Pré-Albumina/genética , Adulto Jovem
19.
J Transl Sci ; 7(1)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33868719

RESUMO

Diabetes is a global healthcare problem associated with enormous healthcare and personal costs. Despite glucose lowering agents that control glycaemia, both type 1 (T1D) and type (T2D) diabetes patients often develop microvascular complications that increase morbidity and mortality. Current interventions rely on careful glycemic control and healthy lifestyle choices, but these are ineffective at reversing or completely preventing the major microvascular complications, diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). Minocycline, a tetracycline antibiotic with anti-inflammatory and anti-apoptotic properties, has been proposed as a protective agent in diabetes. However, there are no reported studies evaluating the therapeutic efficacy of minocycline in T1D and T2D models for all microvascular complications (DPN, DR, and DKD). Therefore, we performed metabolic profiling in streptozotocin-induced T1D and db/db T2D models and compared the efficacy of minocycline in preventing complications to that of insulin and pioglitazone in both models. Minocycline partially ameliorated DR and DKD in T1D and T2D animals, but was less effective than insulin or pioglitazone, and failed to improve DPN in either model. These results suggest that minocycline is unlikely to improve outcomes beyond that achieved with current available therapies in patients with T1D or T2D associated microvascular complications.

20.
Dis Model Mech ; 14(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33692086

RESUMO

Peripheral neuropathy (PN) is a common complication of prediabetes and diabetes and is an increasing problem worldwide. Existing PN treatments rely solely on glycemic control, which is effective in type 1 but not type 2 diabetes. Sex differences in response to anti-diabetic drugs further complicate the identification of effective PN therapies. Preclinical research has been primarily carried out in males, highlighting the need for increased sex consideration in PN models. We previously reported PN sex dimorphism in obese leptin-deficient ob/ob mice. This genetic model is inherently limited, however, owing to leptin's role in metabolism. Therefore, the current study goal was to examine PN and insulin resistance in male and female C57BL6/J mice fed a high-fat diet (HFD), an established murine model of human prediabetes lacking genetic mutations. HFD mice of both sexes underwent longitudinal phenotyping and exhibited expected metabolic and PN dysfunction compared to standard diet (SD)-fed animals. Hindpaw thermal latencies to heat were shorter in HFD females versus HFD males, as well as SD females versus males. Compared to HFD males, female HFD mice exhibited delayed insulin resistance, yet still developed the same trajectory of nerve conduction deficits and intraepidermal nerve fiber density loss. Subtle differences in adipokine levels were also noted by sex and obesity status. Collectively, our results indicate that although females retain early insulin sensitivity upon HFD challenge, this does not protect them from developing the same degree of PN as their male counterparts. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neuropatias Diabéticas/patologia , Dieta Hiperlipídica , Resistência à Insulina , Estado Pré-Diabético/patologia , Caracteres Sexuais , Adipocinas/sangue , Animais , Modelos Animais de Doenças , Feminino , Lipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Estado Pré-Diabético/sangue , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...