Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36711670

RESUMO

Plasmodium falciparum (Pf) is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent PfNF54 parasite line (PfNF54cspGFP) to isolate PfLS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early Pf LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS. The developmental time course gene expression analysis indicated that fatty acid biosynthesis, isoprenoid biosynthesis and iron metabolism are sustaining LS development along with amino acid metabolism and biosynthesis. Countering oxidative stress appears to play an important role during intrahepatic LS development. Furthermore, we observed expression of the variant PfEMP1 antigen-encoding var genes, and we confirmed expression of PfEMP1 protein during LS development. Transcriptome comparison of the late Pf liver stage schizonts with P. vivax (Pv) late liver stages revealed highly conserved gene expression profiles among orthologous genes. A notable difference however was the expression of genes regulating sexual stage commitment. While Pv schizonts expressed markers of sexual commitment, the Pf LS parasites were not sexually committed and showed expression of gametocytogenesis repression factors. Our results provide the first comprehensive gene expression profile of the human malaria parasite Pf LS isolated during in vivo intrahepatocytic development. This data will inform biological studies and the search for effective intervention strategies that can prevent infection.

2.
PLoS One ; 15(9): e0238840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925980

RESUMO

Diagnosis of visceral leishmaniasis (VL) relies on invasive and risky aspirate procedures, and confirmation of cure after treatment is unreliable. Detection of Leishmania donovani antigens in urine has the potential to provide both a non-invasive diagnostic and a test of cure. We searched for L. donovani antigens in urine of VL patients from India and Sudan to contribute to the development of urine antigen capture immunoassays. VL urine samples were incubated with immobilised anti-L. donovani polyclonal antibodies and captured material was eluted. Sudanese eluted material and concentrated VL urine were analysed by western blot. Immunocaptured and immunoreactive material from Indian and Sudanese urine was submitted to mass spectrometry for protein identification. We identified six L. donovani proteins from VL urine. Named proteins were 40S ribosomal protein S9, kinases, and others were hypothetical. Thirty-three epitope regions were predicted with high specificity in the 6 proteins. Of these, 20 were highly specific to Leishmania spp. and are highly suitable for raising antibodies for the subsequent development of an antigen capture assay. We present all the identified proteins and analysed epitope regions in full so that they may contribute to the development of non-invasive immunoassays for this deadly disease.


Assuntos
Anticorpos Antiprotozoários/urina , Antígenos de Protozoários/urina , Leishmania donovani/imunologia , Leishmaniose Visceral/diagnóstico , Proteínas de Protozoários/urina , Adulto , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/isolamento & purificação , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/isolamento & purificação , Estudos de Casos e Controles , Humanos , Índia/epidemiologia , Leishmania donovani/isolamento & purificação , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/urina , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/isolamento & purificação
3.
Artigo em Inglês | MEDLINE | ID: mdl-30619774

RESUMO

Background: There is a recognized need for an improved diagnostic test to assess post-chemotherapeutic treatment outcome in visceral leishmaniasis (VL) and to diagnose post kala-azar dermal leishmaniasis (PKDL). We previously demonstrated by ELISA and a prototype novel rapid diagnostic test (RDT), that high anti-Leishmania IgG1 is associated with post-treatment relapse versus cure in VL. Methodology: Here, we further evaluate this novel, low-cost RDT, named VL Sero K-SeT, and ELISA for monitoring IgG1 levels in VL patients after treatment. IgG1 levels against L. donovani lysate were determined. We applied these assays to Indian sera from cured VL at 6 months post treatment as well as to relapse and PKDL patients. Sudanese sera from pre- and post-treatment and relapse were also tested. Results: Of 104 paired Indian sera taken before and after treatment for VL, when deemed clinically cured, 81 (77.9%) were positive by VL Sero K-SeT before treatment; by 6 months, 68 of these 81 (84.0%) had a negative or reduced RDT test line intensity. ELISAs differed in positivity rate between pre- and post-treatment (p = 0.0162). Twenty eight of 33 (84.8%) Indian samples taken at diagnosis of relapse were RDT positive. A comparison of Indian VL Sero K-SeT data from patients deemed cured and relapsed confirmed that there was a significant difference (p < 0.0001) in positivity rate for the two groups using this RDT. Ten of 17 (58.8%) Sudanese sera went from positive to negative or decreased VL Sero K-SeT at the end of 11-30 days of treatment. Forty nine of 63 (77.8%) PKDL samples from India were positive by VL Sero K-SeT. Conclusion: We have further shown the relevance of IgG1 in determining clinical status in VL patients. A positive VL Sero K-SeT may also be helpful in supporting diagnosis of PKDL. With further refinement, such as the use of specific antigens, the VL Sero K-SeT and/or IgG1 ELISA may be adjuncts to current VL control programmes.


Assuntos
Imunoglobulina G/sangue , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/terapia , Antígenos de Protozoários/imunologia , Testes Diagnósticos de Rotina , Ensaio de Imunoadsorção Enzimática , Humanos , Testes Imunológicos , Índia , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Kit de Reagentes para Diagnóstico , Recidiva , Sudão
4.
Mol Microbiol ; 91(4): 679-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330260

RESUMO

Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver-stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic acid synthesis. Our research shows that apicoplast-targeted Plasmodium yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver-stage development and deletion of the encoding genes resulted in late liver-stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver-stage maturation.


Assuntos
Fígado/parasitologia , Ácidos Fosfatídicos/biossíntese , Plasmodium yoelii/enzimologia , Plasmodium yoelii/fisiologia , Plastídeos/enzimologia , Plastídeos/metabolismo , Aciltransferases/metabolismo , Animais , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Camundongos , Plasmodium yoelii/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...