Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721944

RESUMO

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Genótipo , Sequência de Bases , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
2.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066341

RESUMO

Splicing quantitative trait loci (QTLs) have been implicated as a common mechanism underlying complex trait associations. However, utilising splicing QTLs in target discovery and prioritisation has been challenging due to extensive data normalisation which often renders the direction of the genetic effect as well as its magnitude difficult to interpret. This is further complicated by the fact that strong expression QTLs often manifest as weak splicing QTLs and vice versa, making it difficult to uniquely identify the underlying molecular mechanism at each locus. We find that these ambiguities can be mitigated by visualising the association between the genotype and average RNA sequencing read coverage in the region. Here, we generate these QTL coverage plots for 1.7 million molecular QTL associations in the eQTL Catalogue identified with five quantification methods. We illustrate the utility of these QTL coverage plots by performing colocalisation between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. We find that while visually confirmed splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases. All our association summary statistics and QTL coverage plots are freely available at https://www.ebi.ac.uk/eqtl/.

3.
Nucleic Acids Res ; 51(D1): D977-D985, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350656

RESUMO

The NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas) is a FAIR knowledgebase providing detailed, structured, standardised and interoperable genome-wide association study (GWAS) data to >200 000 users per year from academic research, healthcare and industry. The Catalog contains variant-trait associations and supporting metadata for >45 000 published GWAS across >5000 human traits, and >40 000 full P-value summary statistics datasets. Content is curated from publications or acquired via author submission of prepublication summary statistics through a new submission portal and validation tool. GWAS data volume has vastly increased in recent years. We have updated our software to meet this scaling challenge and to enable rapid release of submitted summary statistics. The scope of the repository has expanded to include additional data types of high interest to the community, including sequencing-based GWAS, gene-based analyses and copy number variation analyses. Community outreach has increased the number of shared datasets from under-represented traits, e.g. cancer, and we continue to contribute to awareness of the lack of population diversity in GWAS. Interoperability of the Catalog has been enhanced through links to other resources including the Polygenic Score Catalog and the International Mouse Phenotyping Consortium, refinements to GWAS trait annotation, and the development of a standard format for GWAS data.


Assuntos
Estudo de Associação Genômica Ampla , Bases de Conhecimento , Animais , Humanos , Camundongos , Variações do Número de Cópias de DNA , National Human Genome Research Institute (U.S.) , Fenótipo , Polimorfismo de Nucleotídeo Único , Software , Estados Unidos
4.
Nat Commun ; 13(1): 6102, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243721

RESUMO

Multiple psychiatric disorders have been associated with abnormalities in both the innate and adaptive immune systems. The role of these abnormalities in pathogenesis, and whether they are driven by psychiatric risk variants, remains unclear. We test for enrichment of GWAS variants associated with multiple psychiatric disorders (cross-disorder or trans-diagnostic risk), or 5 specific disorders (cis-diagnostic risk), in regulatory elements in immune cells. We use three independent epigenetic datasets representing multiple organ systems and immune cell subsets. Trans-diagnostic and cis-diagnostic risk variants (for schizophrenia and depression) are enriched at epigenetically active sites in brain tissues and in lymphoid cells, especially stimulated CD4+ T cells. There is no evidence for enrichment of either trans-risk or cis-risk variants for schizophrenia or depression in myeloid cells. This suggests a possible model where environmental stimuli activate T cells to unmask the effects of psychiatric risk variants, contributing to the pathogenesis of mental health disorders.


Assuntos
Transtornos Mentais , Esquizofrenia , Domínio Catalítico , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Linfócitos , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
5.
Nat Genet ; 53(11): 1527-1533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711957

RESUMO

Genome-wide association studies (GWASs) have identified many variants associated with complex traits, but identifying the causal gene(s) is a major challenge. In the present study, we present an open resource that provides systematic fine mapping and gene prioritization across 133,441 published human GWAS loci. We integrate genetics (GWAS Catalog and UK Biobank) with transcriptomic, proteomic and epigenomic data, including systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues. We identify 729 loci fine mapped to a single-coding causal variant and colocalized with a single gene. We trained a machine-learning model using the fine-mapped genetics and functional genomics data and 445 gold-standard curated GWAS loci to distinguish causal genes from neighboring genes, outperforming a naive distance-based model. Our prioritized genes were enriched for known approved drug targets (odds ratio = 8.1, 95% confidence interval = 5.7, 11.5). These results are publicly available through a web portal ( http://genetics.opentargets.org ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets.


Assuntos
Estudo de Associação Genômica Ampla , Genômica/métodos , Modelos Genéticos , Mapeamento Cromossômico/métodos , Epigenômica , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
6.
Nat Genet ; 53(9): 1290-1299, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34493866

RESUMO

Many gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue ( https://www.ebi.ac.uk/eqtl ), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Linfócitos T CD4-Positivos/citologia , Conjuntos de Dados como Assunto , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Elife ; 102021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402426

RESUMO

Background: The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19. Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets. Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19. Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19. Funding: MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.


Individuals who become infected with the virus that causes COVID-19 can experience a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe illness and death. Key demographic factors, such as age, gender and race, are known to affect how susceptible an individual is to infection. However, molecular factors, such as unique gene mutations and gene expression levels can also have a major impact on patient responses by affecting the levels of proteins in the body. Proteins that are too abundant or too scarce may mean the difference between dying from or surviving COVID-19. Identifying the molecular factors in a host that affect how viruses can infect individuals, evade immune defences or trigger severe illness, could provide new ways to treat patients with COVID-19. Such factors are likely to remain constant, even when the virus mutates into new strains. Hence, insights would likely apply across all virus strains, including current strains, such as alpha and delta, and any new strains that may emerge in the future. Using such a 'natural experiment' approach, Karim et al. compared the genetic profiles of over 30,000 COVID-19 patients and a million healthy individuals. Nine proteins were found to have an impact on COVID-19 infection and disease severity. Four proteins were ranked as top priorities for potential treatment targets. One protein, called CD209 (also known as DC-SIGN), is involved in how the virus enters the host cells, and had one of the strongest associations with COVID-19. Two proteins, called IL-6R and FAS, were involved in the immune response and could be responsible for the immune over-activation often seen in severe COVID-19. Finally, one protein, called OAS1, formed part of the body's innate antiviral defence system and appeared to reduce susceptibility to COVID-19. Knowing more about the proteins that influence the severity of COVID-19 opens up new ways to predict, protect and treat patients who may have severe or fatal reactions to infection. Indeed, one of the identified proteins (IL-6R) had already been targeted in recent clinical trials with some encouraging results. Considering CD209 as a potential receptor for the virus could provide another avenue for therapeutics, similar to previously successful approaches to block the virus' known interaction with a receptor protein. Ultimately, this research could supply an entirely new set of treatment options to help combat the COVID-19 pandemic.


Assuntos
COVID-19/virologia , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , Moléculas de Adesão Celular , Humanos , Lectinas Tipo C , Proteoma , Receptores de Superfície Celular , Receptores Depuradores Classe A/genética , Índice de Gravidade de Doença , Receptor fas/genética
8.
Cell Genom ; 1(1)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36082306

RESUMO

Genome-wide association studies (GWASs) have enabled robust mapping of complex traits in humans. The open sharing of GWAS summary statistics (SumStats) is essential in facilitating the larger meta-analyses needed for increased power in resolving the genetic basis of disease. However, most GWAS SumStats are not readily accessible because of limited sharing and a lack of defined standards. With the aim of increasing the availability, quality, and utility of GWAS SumStats, the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog organized a community workshop to address the standards, infrastructure, and incentives required to promote and enable sharing. We evaluated the barriers to SumStats sharing, both technological and sociological, and developed an action plan to address those challenges and ensure that SumStats and study metadata are findable, accessible, interoperable, and reusable (FAIR). We encourage early deposition of datasets in the GWAS Catalog as the recognized central repository. We recommend standard requirements for reporting elements and formats for SumStats and accompanying metadata as guidelines for community standards and a basis for submission to the GWAS Catalog. Finally, we provide recommendations to enable, promote, and incentivize broader data sharing, standards and FAIRness in order to advance genomic medicine.

9.
Nucleic Acids Res ; 49(D1): D1311-D1320, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33045747

RESUMO

Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Doenças Inflamatórias Intestinais/genética , Terapia de Alvo Molecular/métodos , Locos de Características Quantitativas , Software , Cromatina/química , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Internet , Fenótipo , Característica Quantitativa Herdável
10.
HLA ; 95(6): 561-572, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227678

RESUMO

We have developed a genotyping assay that produces fully phased, unambiguous HLA-E genotyping using Pacific Biosciences' single molecule real-time DNA sequencing. In total 212 cell lines were genotyped, including the panel of 107 established at the 10th International Histocompatibility Workshop. Our results matched the previously known HLA-E genotype in 94 (44.3%) cell lines, in all cases either improving or equalling previous genotyping resolution. Three (1.4%) cells had discrepant HLA-E genotyping data and 115 (54.2%) had no previous HLA-E data. The HLA-E genotypes for four (1.9%) cell lines resulted in a change of zygosity by identifying two distinct haplotypes. We discovered eight novel HLA-E alleles, extended the known reference sequence of seven and confirmed the existence of a further 10.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe II , Alelos , Linhagem Celular , Genótipo , Antígenos HLA , Antígenos de Histocompatibilidade Classe II/genética , Teste de Histocompatibilidade , Análise de Sequência de DNA
12.
Biol Blood Marrow Transplant ; 25(3): 443-450, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30935664

RESUMO

HLA matching at an allelic-level resolution for volunteer unrelated donor (VUD) hematopoietic cell transplantation (HCT) results in improved survival and fewer post-transplant complications. Limitations in typing technologies used for the hyperpolymorphic HLA genes have meant that variations outside of the antigen recognition domain (ARD) have not been previously characterized in HCT. Our aim was to explore the extent of diversity outside of the ARD and determine the impact of this diversity on transplant outcome. Eight hundred ninety-one VUD-HCT donors and their recipients transplanted for a hematologic malignancy in the United Kingdom were retrospectively HLA typed at an ultra-high resolution (UHR) for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 using next-generation sequencing technology. Matching was determined at full gene level for HLA class I and at a coding DNA sequence level for HLA class II genes. The HLA matching status changed in 29.1% of pairs after UHR HLA typing. The 12/12 UHR HLA matched patients had significantly improved 5-year overall survival when compared with those believed to be 12/12 HLA matches based on their original HLA typing but were found to be mismatched after UHR HLA typing (54.8% versus 30.1%, P = .022). Survival was also significantly better in 12/12 UHR HLA-matched patients when compared with those with any degree of mismatch at this level of resolution (55.1% versus 40.1%, P = .005). This study shows that better HLA matching, found when typing is done at UHR that includes exons outside of the ARD, introns, and untranslated regions, can significantly improve outcomes for recipients of a VUD-HCT for a hematologic malignancy and should be prospectively performed at donor selection.


Assuntos
Transplante de Células-Tronco Hematopoéticas/mortalidade , Teste de Histocompatibilidade/normas , Histocompatibilidade/imunologia , Análise de Sequência de DNA/normas , Adulto , Alelos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Histocompatibilidade/genética , Teste de Histocompatibilidade/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Doadores não Relacionados
13.
Nucleic Acids Res ; 47(D1): D1005-D1012, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30445434

RESUMO

The GWAS Catalog delivers a high-quality curated collection of all published genome-wide association studies enabling investigations to identify causal variants, understand disease mechanisms, and establish targets for novel therapies. The scope of the Catalog has also expanded to targeted and exome arrays with 1000 new associations added for these technologies. As of September 2018, the Catalog contains 5687 GWAS comprising 71673 variant-trait associations from 3567 publications. New content includes 284 full P-value summary statistics datasets for genome-wide and new targeted array studies, representing 6 × 109 individual variant-trait statistics. In the last 12 months, the Catalog's user interface was accessed by ∼90000 unique users who viewed >1 million pages. We have improved data access with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database. Summary statistics provision is supported by a new format proposed as a community standard for summary statistics data representation. This format was derived from our experience in standardizing heterogeneous submissions, mapping formats and in harmonizing content. Availability: https://www.ebi.ac.uk/gwas/.


Assuntos
Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Doença/genética , Variação Genética , Humanos , Análise em Microsséries , Publicações , Software , Interface Usuário-Computador
14.
Open Heart ; 3(1): e000342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848395

RESUMO

OBJECTIVE: The balance between coronary endothelial dysfunction and repair is influenced by many protective and deleterious factors circulating in the blood. We studied the relationship between oxidised low-density lipoprotein (oxLDL), circulating endothelial progenitor cells (EPCs) and coronary endothelial function in patients with stable coronary heart disease (CHD). METHODS: 33 patients with stable CHD were studied. Plasma oxLDL was measured using ELISA, coronary endothelial function was assessed using intracoronary acetylcholine infusion and EPCs were quantified using flow cytometry for CD34(+)/KDR(+) cells. RESULTS: Plasma oxLDL correlated positively with the number of EPCs in the blood (r=0.46, p=0.02). There was a positive correlation between the number of circulating EPCs and coronary endothelial function (r=0.42, p=0.04). There was no significant correlation between oxLDL and coronary endothelial function. CONCLUSIONS: Plasma levels of oxLDL are associated with increased circulating EPCs in the blood of patients with CHD, which may reflect a host-repair response to endothelial injury. Patients with stable CHD had a high prevalence of coronary endothelial dysfunction, which was associated with lower numbers of circulating EPCs, suggesting a mechanistic link between endothelial dysfunction and the pathogenesis of atherosclerosis.

15.
Hum Immunol ; 77(3): 233-237, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826444

RESUMO

IPD-IMGT/HLA is a constituent of the Immuno Polymorphism Database (IPD), which was developed to provide a centralised system for the study of polymorphism in genes of the immune system. The IPD project works with specialist groups of nomenclature committees who provide and curate individual sections before they are submitted to IPD for online publication. The primary database within the IPD project is the IPD-IMGT/HLA Database, which provides a locus-specific database for the hyper-polymorphic allele sequences of the genes in the HLA system, also known as the human Major Histocompatibility Complex. The IPD-IMGT/HLA Database was first released over 17 years ago, building on the work of the WHO Nomenclature Committee for Factors of the HLA system that was initiated in 1968. The IPD-IMGT/HLA Database enhanced this work by providing the HLA community with an online, searchable repository of highly curated HLA sequences. Many of the genes encode proteins of the immune system and are hyper polymorphic, with some genes currently having over 4000 known allelic variants. Through the work of the HLA Informatics Group and in collaboration with the European Bioinformatics Institute we are able to provide public access to this data through the website, http://www.ebi.ac.uk/ipd/imgt/hla.


Assuntos
Bases de Dados Factuais , Antígenos HLA/genética , Antígenos HLA/imunologia , Imunidade/genética , Imunogenética , Polimorfismo Genético , Alelos , Biologia Computacional/métodos , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Imunogenética/métodos , Navegador
16.
Nucleic Acids Res ; 43(Database issue): D423-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414341

RESUMO

The Immuno Polymorphism Database (IPD) was developed to provide a centralized system for the study of polymorphism in genes of the immune system. Through the IPD project we have established a central platform for the curation and publication of locus-specific databases involved either directly or related to the function of the Major Histocompatibility Complex in a number of different species. We have collaborated with specialist groups or nomenclature committees that curate the individual sections before they are submitted to IPD for online publication. IPD consists of five core databases, with the IMGT/HLA Database as the primary database. Through the work of the various nomenclature committees, the HLA Informatics Group and in collaboration with the European Bioinformatics Institute we are able to provide public access to this data through the website http://www.ebi.ac.uk/ipd/. The IPD project continues to develop with new tools being added to address scientific developments, such as Next Generation Sequencing, and to address user feedback and requests. Regular updates to the website ensure that new and confirmatory sequences are dispersed to the immunogenetics community, and the wider research and clinical communities.


Assuntos
Alelos , Bases de Dados Genéticas , Antígenos HLA/genética , Complexo Principal de Histocompatibilidade , Polimorfismo Genético , Antígenos de Plaquetas Humanas , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Modelos Genéticos , Receptores KIR/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...