Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 31(8): 1366-1380, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183453

RESUMO

Concepts of evolutionary biology suggest that morphological change may occur by rare punctual but rather large changes, or by more steady and gradual transformations. It can therefore be asked whether genetic changes underlying morphological, physiological, and/or behavioral innovations during evolution occur in a punctual manner, whereby a single mutational event has prominent phenotypic consequences, or if many consecutive alterations in the DNA over longer time periods lead to phenotypic divergence. In the marine teleost, sablefish (Anoplopoma fimbria), complementary genomic and genetic studies led to the identification of a sex locus on the Y Chromosome. Further characterization of this locus resulted in identification of the transforming growth factor, beta receptor 1a (tgfbr1a) gene, gonadal somatic cell derived factor (gsdf), as the main candidate for fulfilling the master sex determining (MSD) function. The presence of different X and Y Chromosome copies of this gene indicated that the male heterogametic (XY) system of sex determination in sablefish arose by allelic diversification. The gsdfY gene has a spatio-temporal expression profile characteristic of a male MSD gene. We provide experimental evidence demonstrating a pivotal role of a transposable element (TE) for the divergent function of gsdfY By insertion within the gsdfY promoter region, this TE generated allelic diversification by bringing cis-regulatory modules that led to transcriptional rewiring and thus creation of a new MSD gene. This points out, for the first time in the scenario of MSD gene evolution by allelic diversification, a single, punctual molecular event in the appearance of a new trigger for male development.


Assuntos
Elementos de DNA Transponíveis , Processos de Determinação Sexual , Animais , Evolução Molecular , Genômica , Masculino , Processos de Determinação Sexual/genética , Cromossomo Y
2.
Gene ; 764: 145093, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32866588

RESUMO

Phenotypic sex of an organism is determined by molecular changes in the gonads, so-called molecular sex differentiation, which should precede the rise of cellular or anatomical sex-distinguishing features. This study characterized molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with established XX/XY genotypic sex determination. Next generation sequencing was conducted on sablefish ovarian and testicular mRNAs to obtain sequences for transcripts associated with vertebrate sex determination and differentiation and early reproductive development. Gene-specific PCRs were developed to determine the distribution and ontogenetic gonadal expression of transcription, growth, steroidogenic and germline factors, as well as gonadotropin and steroid receptors. Molecular changes associated with sex differentiation were first apparent in both XY- and XX-genotype sablefish at ~ 60 mm in body length and prior to histological signs of sex differentiation. The earliest and most robust markers of testicular differentiation were gsdf, amh, dmrt1, cyp11b, star, sox9a, and fshr. Markedly elevated mRNA levels of several steroidogenesis-related genes and ar2 in differentiating testes suggested that androgens play a role in sablefish testicular differentiation. The earliest markers of ovarian differentiation were cyp19a1a, lhcgr, foxl2, nr0b1, and igf3. Other transcripts such as figla, zp3, and pou5f3 were expressed predominantly in XX-genotype fish and significantly increased with the first appearance and subsequent development of primary oocytes. This study provides valuable insight to the developmental sequence of events associated with gonadal sex differentiation in marine teleosts with XX/XY sex determination. It also implicates particular genes in processes of male and female development and establishes robust molecular markers for phenotypic sex in sablefish, useful for ongoing work related to sex control and reproductive sterilization.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Perciformes/fisiologia , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Feminino , Proteínas de Peixes/análise , Proteínas de Peixes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fenótipo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
3.
PLoS One ; 15(5): e0233322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469895

RESUMO

The importance of dietary lipids in male reproduction are not as well understood as in females, in which dietary lipids, such as phospholipids (PL) and associated fatty acids (FA), are important structural components of the eggs and provide energy for their offspring. In mammals, lipids are suggested to be important for spermatogenesis and to structural components of the spermatozoa that could improve fertilization rates. New knowledge of how lipids affect sexual maturation in male Atlantic salmon (Salmo salar), an important global aquaculture species, could provide tools to delay maturation and/or improve reproductive success. Therefore, changes in testicular composition of lipids and gene transcripts associated with spermatogenesis and lipid metabolism were studied in sexually maturing male salmon compared to immature males and females. An increase in total testis content of FA and PL, and a shift to higher PL composition was observed in maturing males, concomitant with increases in mRNA levels for genes involved in spermatogenesis, FA uptake and synthesis, and production of long chain-polyunsaturated fatty acids (LC-PUFA) and PL. A particularly interesting finding was elevated testis expression of acyl-CoA synthetase 4 (acsl4), and acyl-CoA thioesterase 2 (acot2), critical enzymes that regulate intra-mitochondrial levels of 20:4n-6 FA (arachidonic acid), which have been associated with improved cholesterol transport during steroidogenesis. This suggested that FA may have direct effects on sex steroid production in salmon. Furthermore, we observed increased testis expression of genes for endogenous synthesis of 16:0 and elongation/desaturation to 22:6n-3 (docosahexaenoic acid) in sexually maturing males relative to immature fish. Both of these FA are important structural components of the PL, phosphatidylcholine (PC), and were elevated concomitant with increases in the content of phosphatidic acid, an important precursor for PC, in maturing males compared to immature fish. Overall, this study suggests that, similar to mammals, lipids are important to spermatogenesis and serve as structural components during testicular growth and maturation in Atlantic salmon.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Fosfolipídeos/metabolismo , Salmo salar/metabolismo , Maturidade Sexual , Testículo/metabolismo , Animais , Ácidos Graxos Dessaturases/genética , Feminino , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Masculino , Salmo salar/genética , Testículo/citologia
4.
Gen Comp Endocrinol ; 279: 88-98, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594588

RESUMO

This study determined high temperature effects on ovarian development in a marine groundfish species, sablefish (Anoplopoma fimbria), with potential application in sex reversal or sterilization for aquaculture. Monosex female (XX-genotype) sablefish larvae (∼30 mm) were randomly divided into three groups and exposed to control (15.6 °C ±â€¯0.8 °C), moderate (20.4 °C ±â€¯0.5 °C), or high (21.7 °C ±â€¯0.5 °C) temperatures for 19 weeks. Treated fish were then tagged and transferred to ambient seawater (11.2 °C ±â€¯2.3 °C) for one year to determine whether temperature effects on reproductive development were maintained post-treatment. Fish were periodically sampled for gonadal histology, gene expression and plasma 17ß-estradiol (E2) analyses to assess gonadal development. Short-term (4-week) exposure to elevated temperatures had only minor effects, whereas longer exposure (12-19 weeks) markedly inhibited ovarian development. Fish from the moderate and high treatment groups had significantly less developed ovaries relative to controls, and mRNA levels for germ cell (vasa, zpc) and apoptosis-associated genes (p53, casp8) generally indicated gonadal degeneration. The high treatment group also had significantly reduced plasma E2 levels and elevated gonadal amh gene expression. After one year at ambient temperatures, however, ovaries of moderate and high treatment fish exhibited compensatory recovery and were indistinguishable from controls. Two genotypic females possessing immature testes (neomales) were observed in the high treatment group, indicating sex reversal had occurred (6% rate). These results demonstrate that extreme elevated temperatures may inhibit ovarian development or trigger sex reversal. High temperature treatment is likely not an effective sterilization method but may be preferable for sablefish neomale broodstock production.


Assuntos
Temperatura Alta , Ovário/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Perciformes/genética , Diferenciação Sexual , Água , Animais , Apoptose/genética , Biomarcadores/metabolismo , Estradiol/sangue , Feminino , Genótipo , Masculino , Ovário/efeitos dos fármacos , Perciformes/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29496550

RESUMO

Pituitary-hormone signaling plays critical roles in the onset and progression of gametogenesis in vertebrates. This study characterized expression patterns of pituitary gonadotropin beta-subunits (fshb and lhb), brain-type aromatase (cyp19a1b), androgen (ar1, ar2) and estrogen receptors (esr1, esr2a, esr2b), and changes in plasma steroid levels by liquid chromatography/tandem mass spectrometry in wild sablefish (Anoplopoma fimbria, order Scorpaeniformes) during a complete reproductive cycle. Transcripts for fshb increased during early gametogenesis and peaked in late vitellogenic females and late recrudescent males, while expression of lhb reached maximum levels in periovulatory and spermiating fish. Pituitary levels of cyp19a1b and ar1 were strongly correlated with those of lhb in females and males, increasing during gametogenesis and reaching maximum levels prior to spawning. By contrast, expression of ar2, and the three estrogen receptors differed between female and male sablefish. 17ß-estradiol (E2) was the dominant steroid in females during vitellogenesis, while a range of at least 6 steroids (11ß-hydroxyandrostenedione, testosterone [T], E2, 11-ketotestosterone [11KT], 11-deoxycortisol, and 17α,20ß,21-trihydroxyprogesterone) were detected at similar levels in males during testicular development. Prior to spawning, a marked increase in 4-androstenedione, T, 11KT and E2 was found in both periovulatory females and spermiating males. In conclusion, the concomitant changes in plasma androgen levels and pituitary ar1 expression during gametogenesis suggest a specific role for androgens in pituitary hormone regulation of reproduction in sablefish. Further, our data highlight the importance of E2 during final stages of maturation in this species, which may regulate the transcription of pituitary lhb in a paracrine fashion.


Assuntos
Aromatase/metabolismo , Encéfalo/enzimologia , Peixes/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Gonadotropinas Hipofisárias/metabolismo , Oogênese , RNA Mensageiro/genética , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Estações do Ano , Espermatogênese , Espermatozoides/citologia , Esteroides/sangue , Animais , Feminino , Peixes/metabolismo , Masculino , Hipófise/enzimologia , Hipófise/metabolismo , Esteroides/metabolismo , Espectrometria de Massas em Tandem , Vitelogeninas/biossíntese
6.
Gen Comp Endocrinol ; 225: 212-223, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26386183

RESUMO

The kisspeptin system plays pivotal roles in the regulation of vertebrate reproduction. Classically, kisspeptin produced in the brain stimulates brain gonadotropin-releasing hormone signaling, which in turn activates the pituitary-gonad axis. Expression of the kisspeptin system has also been documented in peripheral tissues, including gonads of mammals and fishes. However, the fish gonadal kisspeptin system remained uncharacterized. Herein we report identification and characterization of four kisspeptin system mRNAs (kisspeptin 1 (kiss1), kiss2, and G protein-coupled receptor 54-1 (gpr54-1) and gpr54-2) in sablefish, Anoplopoma fimbria. Sablefish predicted protein sequences were highly similar to those of other marine teleosts, but less so to freshwater teleosts. Tissue distribution analyses revealed that all four kisspeptin-system transcripts were expressed in both brain and gonad. However, kiss2 was the predominant transcript in the gonads and the only transcript detected in ovulated eggs. Ontogenetic analysis of kiss2 expression in juvenile sablefish gonads demonstrated that levels were low during sex differentiation but increased with fish size and gonadal development. Dramatic increases in kiss2 mRNA occurred during primary oocyte growth, while levels remained relatively low in testes. In situ hybridization revealed that kiss2 mRNA was localized to cytoplasm of perinucleolus stage oocytes, suggesting it could play a local role in oogenesis or could be synthesized and stored within oocytes as maternal mRNA. This represents the first study to focus on the gonadal kisspeptin system in fishes and provides important tools for further investigation of both the gonadal and brain kisspeptin systems in sablefish.


Assuntos
Gônadas/metabolismo , Kisspeptinas/metabolismo , Perciformes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Sexual/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Clonagem Molecular , Kisspeptinas/genética , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...